12,687 research outputs found

    Anisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles

    Full text link
    We have performed polarization-dependent ultrafast pump-probe spectroscopy of a film of aligned single-walled carbon nanotube bundles. By taking into account imperfect nanotube alignment as well as anisotropic absorption cross sections, we quantitatively determined distinctly different photo-bleaching dynamics for polarizations parallel and perpendicular to the tube axis. For perpendicular polarization, we observe a slow (1.0-1.5 ps) relaxation process, previously unobserved in randomly-oriented nanotube bundles. We attribute this slower dynamics to the excitation and relaxation of surface plasmons in the radial direction of the nanotube bundles.Comment: 4 pages, 3 figure

    Fracture mechanics approach to design analysis of notches, steps and internal cut-outs in planar components

    Get PDF
    A new approach to the assessment and optimization of geometric stress-concentrating features is proposed on the basis of the correspondence between sharp crack or corner stressfield intensity factors and conventional elastic stress concentration factors (SCFs) for radiused transitions. This approach complements the application of finite element analysis (FEA) and the use of standard SCF data from the literature. The method makes it possible to develop closed-form solutions for SCFs in cases where corresponding solutions for the sharp crack geometries exist. This is helpful in the context of design optimization. The analytical basis of the correspondence is shown, together with the limits on applicability where stress-free boundaries near the stress concentrating feature are present or adjacent features interact. Examples are given which compare parametric results derived from FEA with closed-form solutions based on the proposed method. New information is given on the stress state at a 90Ā° corner or width step, where the magnitude of the stress field intensity is related to that of the corresponding crack geometry. This correspondence enables the user to extend further the application of crack-tip stress-field intensity information to square-cornered steps, external U-grooves, and internal cut-outs

    Cooperative Jahn-Teller transition and resonant x-ray scattering in thin film LaMnO3{\rm LaMnO_3}

    Full text link
    Epitaxial thin films of stoichiometric LaMnO3{\rm LaMnO_3} were grown on SrTiO3(110){\rm SrTiO_3(110)} substrates using the pulsed laser deposition technique. From the high resolution x-ray diffraction measurements, the lattice parameters were determined as a function of temperature and the cooperative Jahn-Teller transition was found to occur at TJTT_{JT}=573.0 K. Also measured was resonant x-ray scattering intensity of the orthorhombic (100) peak of LaMnO3{\rm LaMnO_3} near the Mn K edge from low temperatures to above TJTT_{JT}. We demonstrate that the integrated intensity of the (100) peak is proportional to the 3/2 power of the orthorhombic strain at all temperatures, and thus provide an experimental evidence that the resonant scattering near the Mn K edge in LaMnO3{\rm LaMnO_3} is largely due to the Jahn-Teller effect.Comment: 13 pages, 4 figure

    KCrF_3: Electronic Structure, Magnetic and Orbital Ordering from First Principles

    Get PDF
    The electronic, magnetic and orbital structures of KCrF_3 are determined in all its recently identified crystallographic phases (cubic, tetragonal, and monoclinic) with a set of {\it ab initio} LSDA and LSDA+U calculations. The high-temperature undistorted cubic phase is metallic within the LSDA, but at the LSDA+U level it is a Mott insulator with a gap of 1.72 eV. The tetragonal and monoclinic phases of KCrF_3 exhibit cooperative Jahn-Teller distortions concomitant with staggered 3x^2-r^2/3y^2-r^2 orbital order. We find that the energy gain due to the Jahn-Teller distortion is 82/104 meV per chromium ion in the tetragonal/monoclinic phase, respectively. These phases show A-type magnetic ordering and have a bandgap of 2.48 eV. In this Mott insulating state KCrF_3 has a substantial conduction bandwidth of 2.1 eV, leading to the possibility for the kinetic energy of charge carriers in electron- or hole-doped derivatives of KCrF_3 to overcome the polaron localization at low temperatures, in analogy with the situation encountered in the colossal magnetoresistive manganites.Comment: 7 pages, 11 figure

    Antiferro-quadrupole Ordering of CeB6_6 Studied by Resonant X-ray Scattering

    Full text link
    Under zero magnetic field, a quadrupolar order parameter at q_Q=(1/2,1/2,1/2) in a typical antiferro-quadrupole (AFQ) ordering compound CeB6 has been observed for the first time by means of a resonant X-ray scattering (RXS) te\ chnique. The RXS is observed at the 2p->5d dipole transition energy of the Ce L3-edge. Using this RXS technique to observe the pure order parameter of the AFQ state, the magnetic phase diagram of Phase II is first determined.Comment: 7 pages, 4 figure

    Interplay of the CE-type charge ordering and the A-type spin ordering in a half-doped bilayer manganite La{1}Sr{2}Mn{2}O{7}

    Full text link
    We demonstrate that the half-doped bilayer manganite La_{1}Sr_{2}Mn_{2}O_{7} exhibits CE-type charge-ordered and spin-ordered states below TN,COA=210T_{N, CO}^A = 210 K and below TNCEāˆ¼145T_{N}^{CE} \sim 145 K, respectively. However, the volume fraction of the CE-type ordering is relatively small, and the system is dominated by the A-type spin ordering. The coexistence of the two types of ordering is essential to understand its transport properties, and we argue that it can be viewed as an effective phase separation between the metallic d(x2āˆ’y2)d(x^{2}-y^{2}) orbital ordering and the charge-localized d(3x2āˆ’r2)/d(3y2āˆ’r2)d(3x^{2}-r^{2})/d(3y^{2}-r^{2}) orbital ordering.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase

    Full text link
    Phase transitions between the quantum spin Hall and the insulator phases in three dimensions are studied. We find that in inversion-asymmetric systems there appears a gapless phase between the quantum spin Hall and insulator phases in three dimensions, which is in contrast with the two-dimensional case. Existence of this gapless phase stems from a topological nature of gapless points (diabolical points) in three dimensions, but not in two dimensions.Comment: 16 pages, 5 figure

    Coexistence of Superconductivity and Antiferromagnetism in Heavy-Fermion Superconductor CeCu_{2}(Si_{1-x}Ge_{x})_{2} Probed by Cu-NQR --A Test Case for the SO(5) Theory--

    Full text link
    We report on the basis of Cu-NQR measurements that superconductivity (SC) and antiferromagnetism (AF) coexist on a microscopic level in CeCu_{2}(Si_{1-x}Ge_{x})_{2}, once a tiny amount of 1%Ge (x = 0.01) is substituted for Si. This coexistence arises because Ge substitution expands the unit-cell volume in nearly homogeneous CeCu2Si2 where the SC coexists with slowly fluctuating magnetic waves. We propose that the underlying exotic phases of SC and AF in either nearly homogeneous or slightly Ge substituted CeCu2Si2 are accountable based on the SO(5) theory that unifies the SC and AF. We suggest that the mechanism of the SC and AF is common in CeCu2Si2.Comment: 7 pages with 6 figures embedded in the text. To be published in J. Phys. Condens. Matter, 200
    • ā€¦
    corecore