15 research outputs found

    Cut-off lows over South Africa : a review

    Get PDF
    DATA AVAILABILITY STATEMENT : The ECMWF ERA5 reanalysis data can be obtained online via a web portal (https://climate.copernicus.eu/, accessed on 15 January 2023).Every year, cut-off low (COL) pressure systems produce severe weather conditions and heavy rainfall, often leading to flooding, devastation and disruption of socio-economic activities in South Africa. COLs are defined as cold-cored synoptic-scale mid-tropospheric low-pressure systems which occur in the mid-latitudes and cause persistent heavy rainfall. As they occur throughout the year, these weather systems are important rainfall producing systems that are also associated with extreme cold conditions and snowfalls. An in-depth review of COLs is critical due to their high impacts which affect some parts of the country regularly, affecting lives and livelihoods. Here, we provide a comprehensive review of the literature on COLs over the South African domain, whilst also comparing them with their Southern Hemisphere counterparts occurring in South America and Australia. We focus on the occurrence, development, propagation, dynamical processes and impacts of COLs on society and the environment. We also seek to understand stratospheric–tropospheric exchanges resulting from tropopause folding during the occurrence of COLs. Sometimes, COLs may extend to the surface, creating conditions conducive to extreme rainfall and high floods over South Africa, especially when impinged on the coastal escarpment. The slow propagation of COLs appears to be largely modulated by a quasi-stationary high-pressure system downstream acting as a blocking system. We also reviewed two severe COL events that occurred over the south and east coasts and found that in both cases, interactions of the low-level flow with the escarpment enhanced lifting and deep convection. It was also determined from the literature that several numerical weather prediction models struggle with placement and amounts of rainfall associated with COLs, both near the coast and on the interior plateau. Our study provides the single most comprehensive treatise that deals with COL characteristics affecting the South African domain.FUNDING : This research was funded by theWater Research Commission Project, Project Account PJ87.https://www.mdpi.com/journal/climateam2024Geography, Geoinformatics and MeteorologySDG-13:Climate actio

    The Impact of Entrepreneurship Education in Higher Education: A Systematic Review and Research Agenda

    Get PDF
    Using a teaching model framework, we systematically review empirical evidence on the impact of entrepreneurship education (EE) in higher education on a range of entrepreneurial outcomes, analyzing 159 published articles from 2004 to 2016. The teaching model framework allows us for the first time to start rigorously examining relationships between pedagogical methods and specific outcomes. Reconfirming past reviews and meta-analyses, we find that EE impact research still predominantly focuses on short-term and subjective outcome measures and tends to severely underdescribe the actual pedagogies being tested. Moreover, we use our review to provide an up-to-date and empirically rooted call for less obvious, yet greatly promising, new or underemphasized directions for future research on the impact of university-based entrepreneurship education. This includes, for example, the use of novel impact indicators related to emotion and mind-set, focus on the impact indicators related to the intention-to-behavior transition, and exploring the reasons for some contradictory findings in impact studies including person-, context-, and pedagogical model-specific moderator

    Systematic experiments to quantitatively assess image quality for CT scans of a Karoo tetrapod fossil

    Get PDF
    CITATION: Tshibalanganda, M., et al. 2019. Systematic experiments to quantitatively assess image quality for CT scans of a Karoo tetrapod fossil. Palaeontologia Africana, 54: 1-13.The original publication is available at https://wiredspace.wits.ac.zaOver the past decade non-destructive, three-dimensional visualization and analysis of fossils using X-ray tomography has greatly advanced palaeontological studies worldwide. Micro-computed tomography (microCT) is now accepted as best practice in palaeontological studies to augment the anatomical description of newly discovered fossils. Despite advances in laboratory microCT hardware, software and skills of users, there is a lack of clear methodologies for scanning and analysing fossils. Here we report on a systematic and detailed study of the quantitative effects of the variation of different microCT scanning parameters on the image quality of an unprepared fossilized Karoo tetrapod skull and parts of the postcrania. Results indicate that voltage variations do not increase the contrast for the bone as one would expect, and the best image quality solution is found using high frame averaging and high X-ray flux (current). Although this study was limited to one specimen, the results may find a practical use for future studies involving similar fossils.https://wiredspace.wits.ac.za/handle/10539/27891Publisher's versio

    Projections of future fire risk under climate change over the South African savanna

    No full text
    DATA AVAILABILITY : The CMIP5 GCM models were obtained from the Copernicus Climate Data Store website https://cds.climate.copernicus.eu/#!/home.Rising surface air temperatures, coupled with delays in the onset of austral summer rains and increased fuel load have amplified forest fire risk over southern Africa. This study investigates interactions between climate change and fire risk in South Africa’s northern savanna biome. We employ the CCAM model to simulate the reference climate and project future forest fire risk on the savanna. An ensemble of six CMIP5 GCMs were downscaled to 8 km to project climate change in the far-future (2080 to 2099) under RCP8.5 emission scenario. The models were validated using ERA5-Land reanalyses whilst future projections focused on the 10th, 50th and 90th percentiles. The frequency of high fire risk days was calculated using a McArthur Forest Fire Danger Index (FFDI) which links meteorological variables to fire danger. The ensemble simulated widespread temperature rises of between 4.5 and 6 °C across the savanna, whilst rainfall is projected to decline by up to 20 mm/month, with corresponding decreases in minimum relative humidity. Heat wave days are projected to increase to above 8 days per annum, whilst soil moisture deficiency increases by above 50 mm on the savanna. Consequently, mean annual high fire danger days are projected to reach a peak frequency of 25 days in October, with an autumnal secondary peak. Spatially, greater increases in high FFDI days were projected over the western savanna extending toward neighbouring Botswana. This study contributes to understanding fire risk under unprecedented temperature rises which appear to be modulating fire intensity in the study region.The South Africa’s National Research Foundation (NRF).https://link.springer.com/journal/4772024-06-07hj2024Geography, Geoinformatics and MeteorologySDG-15:Life on lan

    Extreme Rainfall and Flood Risk Prediction over the East Coast of South Africa

    No full text
    Extreme rainfall associated with mid-tropospheric cut-off low (COL) pressure systems affected the entire east coast of South Africa during April 2022, leading to flooding and destruction of homes, electricity power lines, and road infrastructure, and leaving 448 people confirmed dead. Therefore, this study investigated the evolution of the two COLs and their impacts, including the occurrence of extreme rainfall and cold weather over the southeast coast of the country. We analysed observed and reanalysis meteorological data and mapped areas at risk to impacts of flood hazards on the east coast of South Africa. Extreme rainfall (>500 mm) accumulated over 16 days was observed along the east coast, with the amount of rainfall progressively decreasing inland. We found that the rainfall associated with the first COL was significantly enhanced by the interactions between a strong low-level onshore airflow across the Agulhas Current and the coastal escarpment, resulting in deep convection and lifting. An unusual surface cyclone with tropical characteristics developed over the subtropical southwest Indian Ocean, driving onshore southeasterly winds which enhanced low-level convergence. Moreover, the flood risk results revealed that, amongst others, land cover/use (52.8%), elevation (16.8%) and lithology (15.5%) were the most important flood predictor variables in this study. Much of the study area was found to have very low (28.33%), low (31.82%), and moderate (21.66%) flood risk, whilst the high- and very-high-risk areas accounted for only 17.5% of the total land area. Nonetheless, the derived flood risk map achieved an acceptable level of accuracy of about 89.9% (Area Under Curve = 0.899). The findings of this study contribute to understanding extreme rainfall events and the vulnerability of settlements on South Africa’s east coast to flood risk, which can be used towards natural disaster risk reduction

    Heatwave Variability and Structure in South Africa during Summer Drought

    Get PDF
    Pronounced subsidence leading to summer drought over southern Africa causes warmer than average surface air temperatures or even heatwave (HW) conditions. We investigated the occurrence of HWs during the summer drought over South Africa based on station data and the ECMWF ERA5 reanalyses. Temperature observations from the South African Weather Service were analyzed for seasonality and long-term trends (1981–2020) as background to the occurrence and variability of HWs. We focused on three severe El Niño Southern Oscillation (ENSO)-induced drought seasons, i.e., 1982/83, 1991/92, and 2015/16, to investigate HW characteristics. While 1997/98 was among the strongest El Niño seasons, the impacts were not as severe because it coincided with an intense Angola low, which allowed for rain-bearing cloud bands to form. Results showed that the hottest months were spread across the austral summer season from December to February. Regions experiencing high mean maximum temperatures and high HW frequencies exhibited a strong ENSO signal, with record HWs occurring during 2015/16. The establishment and persistence of a middle-level high-pressure system over Botswana/Namibia (Botswana High) appears to trigger the longest-lasting HWs during drought seasons. The Botswana high is usually coupled with a near-surface continental heat low and/or tropical warm air advection towards the affected region. It was also found that intense ENSO-induced drought events coincided with high HW frequency over South Africa, such as during 1982/83, 1991/92, and the recent 2015/16 events. The results of this study contribute to understanding drought and heat wave dynamics in a region experiencing rapid warming as a result of climate change

    Heatwave Variability and Structure in South Africa during Summer Drought

    No full text
    Pronounced subsidence leading to summer drought over southern Africa causes warmer than average surface air temperatures or even heatwave (HW) conditions. We investigated the occurrence of HWs during the summer drought over South Africa based on station data and the ECMWF ERA5 reanalyses. Temperature observations from the South African Weather Service were analyzed for seasonality and long-term trends (1981–2020) as background to the occurrence and variability of HWs. We focused on three severe El Niño Southern Oscillation (ENSO)-induced drought seasons, i.e., 1982/83, 1991/92, and 2015/16, to investigate HW characteristics. While 1997/98 was among the strongest El Niño seasons, the impacts were not as severe because it coincided with an intense Angola low, which allowed for rain-bearing cloud bands to form. Results showed that the hottest months were spread across the austral summer season from December to February. Regions experiencing high mean maximum temperatures and high HW frequencies exhibited a strong ENSO signal, with record HWs occurring during 2015/16. The establishment and persistence of a middle-level high-pressure system over Botswana/Namibia (Botswana High) appears to trigger the longest-lasting HWs during drought seasons. The Botswana high is usually coupled with a near-surface continental heat low and/or tropical warm air advection towards the affected region. It was also found that intense ENSO-induced drought events coincided with high HW frequency over South Africa, such as during 1982/83, 1991/92, and the recent 2015/16 events. The results of this study contribute to understanding drought and heat wave dynamics in a region experiencing rapid warming as a result of climate change
    corecore