12 research outputs found

    The Impact of Entrepreneurship Education in Higher Education: A Systematic Review and Research Agenda

    Get PDF
    Using a teaching model framework, we systematically review empirical evidence on the impact of entrepreneurship education (EE) in higher education on a range of entrepreneurial outcomes, analyzing 159 published articles from 2004 to 2016. The teaching model framework allows us for the first time to start rigorously examining relationships between pedagogical methods and specific outcomes. Reconfirming past reviews and meta-analyses, we find that EE impact research still predominantly focuses on short-term and subjective outcome measures and tends to severely underdescribe the actual pedagogies being tested. Moreover, we use our review to provide an up-to-date and empirically rooted call for less obvious, yet greatly promising, new or underemphasized directions for future research on the impact of university-based entrepreneurship education. This includes, for example, the use of novel impact indicators related to emotion and mind-set, focus on the impact indicators related to the intention-to-behavior transition, and exploring the reasons for some contradictory findings in impact studies including person-, context-, and pedagogical model-specific moderator

    Characterization of additively manufactured AlSi10Mg cubes with different porosities

    No full text
    Additive manufacturing can be used to produce complex and custom geometries, consolidating different parts into one, which in turn reduces the required number of assemblies and allows distributed manufacturing with short lead times. Defects, such as porosity and surface roughness, associated with parts manufactured by laser powder bed fusion, can severely limit industrial application. The effect these defects have on corrosion and hence long-term structural integrity must also be taken into consideration. The aim of this paper is to report on the characterization of porosity in samples produced by laser powder bed fusion, with the differences in porosity induced by changes in the process parameters. The alloy used in this investigation is AlSi10Mg, which is widely used in the aerospace and automotive industries. The sample characteristics, obtained by X-ray tomography, are reported. The design and production of additively manufactured parts can be improved when these defects are better understood.Light Metals Development Network (LMDN) and the Collaborative Programme for Additive Manufacturing (CPAM), funded by the South African Department of Science and Innovation.http://www.saimm.co.za/journal-papersam2022Materials Science and Metallurgical Engineerin

    The absence of fire can cause a lag phase: The invasion dynamics of <I>Banksia ericifolia</I> (Proteaceae)

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)NatuurwetenskappePlant- en Dierkund

    <I>Banksia ericifolia </I>invading South Africa as predicted - A major threat or just symptom of a peculiar fire regime?

    No full text
    NatuurwetenskappePlant- en DierkundePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    The absence of fire can cause a lag phase: The invasion dynamics of Banksia ericifolia (Proteaceae)

    Get PDF
    The transition from a species introduction to an invasion often spans many decades (a lag phase). However, few studies have determined the mechanisms underlying lag phases. Such a mechanistic understanding is vital if the potential ecosystem-level impacts are to be predicted and the invasion risks to be managed proactively. Here we examine Banksia ericifolia, introduced for floriculture to South Africa, as a case study.We found 18 sites where the species has been planted, with self-sustaining (naturalized) populations at four sites, and an invasive population at one site.The invasion originated from around 100 individuals planted 35 years ago; after several fires this population has grown to approximately 10 000 plants covering about 127 ha. The current invasion of B. ericifolia already has ecosystem-level impacts, for example the nectar available to bird pollinators has more than doubled, potentially disrupting native pollination networks. If fires occurred at the other naturalized sites we anticipate populations would rapidly spread and densify with invaded areas ultimately become banksia-dominated woodlands. Indeed the only site other than the invasive site where fire has occurred regularly is already showing signs of rapid population growth and spread. However, recruitment is mainly immediately post fire and no seed bank accumulates in the soil, mechanical control of adult plants is cheap and effective, and immature plants are easily detected.This study is a first in illustrating the importance of fire in driving lag phases and provides a valuable example for why it is essential to determine the mechanisms that mediate lag phases in introduced plant species. Serotinous species that have been introduced to areas where fire is suppressed could easily be misinterpreted as low risk species whilst they remain in a lag phase, but they can represent a major invasion risk.SANBI ISP / Wf

    Vulnerability and Adaptation to Flood Hazards in Rural Settlements of Limpopo Province, South Africa

    No full text
    Climate change has increased the frequency of extreme weather events such as heavy rainfall leading to floods in several regions. In Africa, rural communities are more vulnerable to flooding, particularly those that dwell in low altitude areas or near rivers and those regions affected by tropical storms. This study examined flood vulnerability in three rural villages in South Africa’s northern Limpopo Province and how communities are building resilience and coping with the hazard. These villages lie at the foot of the north-eastern escarpment, and are often exposed to frequent rainfall enhanced by orographic factors. Although extreme rainfall events are rare in the study area, we analyzed daily rainfall and showed how heavy rainfall of short duration can lead to flooding using case studies. Historical floods were also mapped using remote sensing via the topographical approach and two types of flooding were identified, i.e., those due to extreme rainfall and those due to poor drainage or blocked drainage channels. A field survey was also conducted using questionnaires administered to samples of affected households to identify flood vulnerability indicators and adaptation strategies. Key informant interviews were held with disaster management authorities to provide additional information on flood indicators. Subsequently, a flood vulnerability index was computed to measure the extent of flood vulnerability of the selected communities and it was found that all three villages have a ‘vulnerability to floods’ level, considered a medium level vulnerability. The study also details temporary and long-term adaptation strategies/actions employed by respondents and interventions by local authorities to mitigate the impacts of flooding. Adaptation strategies range from digging furrows to divert water and temporary relocations, to constructing a raised patio around the house. Key recommendations include the need for public awareness; implementation of a raft of improvements and a sustainable infrastructure maintenance regime; integration of modern mitigations with local indigenous knowledge; and development of programs to ensure resilience through incorporation of Integrated Development Planning

    Synoptic structure of a sub-daily extreme precipitation and flood event in Thohoyandou, north-eastern South Africa

    No full text
    An extreme sub-daily precipitation event produced about 300 mm of rainfall in less than 4 h overnight from 13–14 February 2019 resulting in high floods in Thohoyandou, a small town northeast of South Africa. We employed station, radar, satellite and reanalysis datasets to investigate the rainfall, circulation and thermodynamic fields and understand the meteorological structure of the extreme event via a multiscale analysis. The large-scale synoptic environment was characterized by a mid-tropospheric tropical-temperate trough and attendant cloud band coupled to a surface high ridging over the southeast coast of the country. We found that whilst heavy rainfall (>50 mm/24 h) was widespread ahead of the upper trough, extreme amounts (∌100 mm/h) were localized due to a cloudburst. A small perturbation to the favorable large scale mid-tropospheric environment also contributed to localized heavy rainfall. The south-north pressure gradient was steepened by a surface low over southern Mozambique resulting in enhanced moisture fluxes deriving from the southwest Indian Ocean. The interaction of prevailing surface winds and a low-level jet with the steep topography of the adjacent Soutpansberg Mountain Range enhanced low-level convergence and lifting in the area. We also show that the highest rainfalls were uphill of the location of flooding which was contained in a poorly drained valley. Whereas the Unified Model forecasts appeared accurate for the large-scale pattern of heavy rainfall in the area, the rainfall peak was generally underestimated, whilst the timing of extreme rainfall was delayed in the 18Z simulation, which is used by forecasters operationally. Our findings contribute to understanding the occurrence of extreme weather events over northeastern South Africa and also how models treat them, towards natural disaster risk reduction

    Extreme Rainfall and Flood Risk Prediction over the East Coast of South Africa

    No full text
    Extreme rainfall associated with mid-tropospheric cut-off low (COL) pressure systems affected the entire east coast of South Africa during April 2022, leading to flooding and destruction of homes, electricity power lines, and road infrastructure, and leaving 448 people confirmed dead. Therefore, this study investigated the evolution of the two COLs and their impacts, including the occurrence of extreme rainfall and cold weather over the southeast coast of the country. We analysed observed and reanalysis meteorological data and mapped areas at risk to impacts of flood hazards on the east coast of South Africa. Extreme rainfall (>500 mm) accumulated over 16 days was observed along the east coast, with the amount of rainfall progressively decreasing inland. We found that the rainfall associated with the first COL was significantly enhanced by the interactions between a strong low-level onshore airflow across the Agulhas Current and the coastal escarpment, resulting in deep convection and lifting. An unusual surface cyclone with tropical characteristics developed over the subtropical southwest Indian Ocean, driving onshore southeasterly winds which enhanced low-level convergence. Moreover, the flood risk results revealed that, amongst others, land cover/use (52.8%), elevation (16.8%) and lithology (15.5%) were the most important flood predictor variables in this study. Much of the study area was found to have very low (28.33%), low (31.82%), and moderate (21.66%) flood risk, whilst the high- and very-high-risk areas accounted for only 17.5% of the total land area. Nonetheless, the derived flood risk map achieved an acceptable level of accuracy of about 89.9% (Area Under Curve = 0.899). The findings of this study contribute to understanding extreme rainfall events and the vulnerability of settlements on South Africa’s east coast to flood risk, which can be used towards natural disaster risk reduction

    A high‐resolution 3D atlas of the spectrum of tuberculous and COVID‐19 lung lesions

    Get PDF
    Abstract Our current understanding of the spectrum of TB and COVID‐19 lesions in the human lung is limited by a reliance on low‐resolution imaging platforms that cannot provide accurate 3D representations of lesion types within the context of the whole lung. To characterize TB and COVID‐19 lesions in 3D, we applied micro/nanocomputed tomography to surgically resected, postmortem, and paraffin‐embedded human lung tissue. We define a spectrum of TB pathologies, including cavitary lesions, calcium deposits outside and inside necrotic granulomas and mycetomas, and vascular rearrangement. We identified an unusual spatial arrangement of vasculature within an entire COVID‐19 lobe, and 3D segmentation of blood vessels revealed microangiopathy associated with hemorrhage. Notably, segmentation of pathological anomalies reveals hidden pathological structures that might otherwise be disregarded, demonstrating a powerful method to visualize pathologies in 3D in TB lung tissue and whole COVID‐19 lobes. These findings provide unexpected new insight into the spatial organization of the spectrum of TB and COVID‐19 lesions within the framework of the entire lung
    corecore