136 research outputs found

    Controls on Ecosystem Carbon Dioxide Exchange in Short- and Long-Hydroperiod Florida Everglades Freshwater Marshes

    Get PDF
    Although freshwater wetlands are among the most productive ecosystems on Earth, little is known of carbon dioxide (CO2) exchange in low latitude wetlands. The Everglades is an extensive, oligotrophic wetland in south Florida characterized by short- and long-hydroperiod marshes. Chamber-based CO2 exchange measurements were made to compare the marshes and examine the roles of primary producers, seasonality, and environmental drivers in determining exchange rates. Low rates of CO2 exchange were observed in both marshes with net ecosystem production reaching maxima of 3.77 and 4.28 μmol CO2 m−2 s−1 in short- and long-hydroperiod marshes, respectively. Fluxes of CO2 were affected by seasonality only in the short-hydroperiod marsh, where flux rates were significantly lower in the wet season than in the dry season. Emergent macrophytes dominated fluxes at both sites, though this was not the case for the short-hydroperiod marsh in the wet season. Water depth, a factor partly under human control, significantly affected gross ecosystem production at the short-hydroperiod marsh. As Everglades ecosystem restoration proceeds, leading to deeper water and longer hydroperiods, productivity in short-hydroperiod marshes will likely be more negatively affected than in long-hydroperiod marshes. The Everglades stand in contrast to many freshwater wetlands because of ecosystem-wide low productivity rates

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    A relational model of perceived overqualification : the moderating role of interpersonal influence on social acceptance.

    Get PDF
    Theories of perceived overqualification have tended to focus on employees’ job-related responses to account for effects on performance. We offer an alternative perspective and theorize that perceived overqualification could influence work performance through a relational mechanism. We propose that relational skills, in the form of interpersonal influence of overqualified employees, determine their tendency to experience social acceptance and, thus, engage in positive work-related behaviors. We tested this relational model across two studies using time-lagged, multisource data. In Study 1, the results indicated that for employees high on interpersonal influence, perceived overqualification was positively related to self-reported social acceptance, whereas for employees low on interpersonal influence, the relationship was negative. Social acceptance, in turn, was positively related to in-role job performance, interpersonal altruism, and team member proactivity evaluated by supervisors. In Study 2, we focused on peer-reported social acceptance and found that the indirect relationships between perceived overqualification and supervisor-reported behavioral outcomes via social acceptance were negative when interpersonal influence was low and nonsignificant when interpersonal influence was high. The implications of the general findings are discussed

    Inhibition of Monkeypox virus replication by RNA interference

    Get PDF
    The Orthopoxvirus genus of Poxviridae family is comprised of several human pathogens, including cowpox (CPXV), Vaccinia (VACV), monkeypox (MPV) and Variola (VARV) viruses. Species of this virus genus cause human diseases with various severities and outcome ranging from mild conditions to death in fulminating cases. Currently, vaccination is the only protective measure against infection with these viruses and no licensed antiviral drug therapy is available. In this study, we investigated the potential of RNA interference pathway (RNAi) as a therapeutic approach for orthopox virus infections using MPV as a model. Based on genome-wide expression studies and bioinformatic analysis, we selected 12 viral genes and targeted them by small interference RNA (siRNA). Forty-eight siRNA constructs were developed and evaluated in vitro for their ability to inhibit viral replication. Two genes, each targeted with four different siRNA constructs in one pool, were limiting to viral replication. Seven siRNA constructs from these two pools, targeting either an essential gene for viral replication (A6R) or an important gene in viral entry (E8L), inhibited viral replication in cell culture by 65-95% with no apparent cytotoxicity. Further analysis with wild-type and recombinant MPV expressing green fluorescence protein demonstrated that one of these constructs, siA6-a, was the most potent and inhibited viral replication for up to 7 days at a concentration of 10 nM. These results emphasis the essential role of A6R gene in viral replication, and demonstrate the potential of RNAi as a therapeutic approach for developing oligonucleotide-based drug therapy for MPV and other orthopox viruses

    Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Get PDF
    Monkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2) using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our results highlight the role of histones, actin, cell cycle regulators, and ion channels in MPV infection, and propose these host functions as attractive research focal points in identifying novel drug intervention sites

    The ERK and JNK pathways in the regulation of metabolic reprogramming.

    Get PDF
    Most tumor cells reprogram their glucose metabolism as a result of mutations in oncogenes and tumor suppressors, leading to the constitutive activation of signaling pathways involved in cell growth. This metabolic reprogramming, known as aerobic glycolysis or the Warburg effect, allows tumor cells to sustain their fast proliferation and evade apoptosis. Interfering with oncogenic signaling pathways that regulate the Warburg effect in cancer cells has therefore become an attractive anticancer strategy. However, evidence for the occurrence of the Warburg effect in physiological processes has also been documented. As such, close consideration of which signaling pathways are beneficial targets and the effect of their inhibition on physiological processes are essential. The MAPK/ERK and MAPK/JNK pathways, crucial for normal cellular responses to extracellular stimuli, have recently emerged as key regulators of the Warburg effect during tumorigenesis and normal cellular functions. In this review, we summarize our current understanding of the roles of the ERK and JNK pathways in controlling the Warburg effect in cancer and discuss their implication in controlling this metabolic reprogramming in physiological processes and opportunities for targeting their downstream effectors for therapeutic purposes.Brunel Research Initiative & Enterprise Fund, Brunel University of London (to CB), Kay Kendall Leukemia Fund (KKL443) (to CB), 250 Great Minds Fellowship, University of Leeds (to SP), AMMF Cholangiocarcinoma Charity (to SP and PMC), and Bloodwise (17014) (to SP and CB)
    • …
    corecore