127 research outputs found

    Dark Matter at the Center and in the Halo of the Galaxy

    Full text link
    All presently known stellar-dynamical constraints on the size and mass of the supermassive compact dark object at the Galactic center are consistent with a ball of self-gravitating, nearly non-interacting, degenerate fermions with mass between 76 and 491 keV, for degeneracy factor g=2. Sterile neutrinos of 76 keV mass, which are mixed with at least one of the active neutrinos with a mixing angele ~10^{-7}, are produced in about the right amount in the early Universe by incoherent resonant and non-resonant scattering of active neutrinos having asymmetry of ~0.01. The former process yields sterile neutrinos with a quasi-degenerate spectrum while the latter leads to a thermal spectrum. As the production mechanism of the sterile neutrino is consistent with the constraints from large scale structure formation, core collapse supernovae, and diffuse X-ray background, it could be the dark matter particle of the Universe.Comment: 6 pages, to appear in the Beyond 2003 conference proceeding

    Sgr A^*: A supermassive black hole or a spatially extended object?

    Full text link
    We report here on a calculation of possible orbits of the fast moving infrared source S1 which has been recently observed by Eckart and Genzel (1997) near the Galactic center. It is shown that tracking of the orbit of S1 or any other fast moving star near Sgr A^* offers a possibility of distinguishing between the supermassive black hole and extended object scenarios of Sgr A^*. In our calculations we assumed that the extended object at the Galactic center is a non-baryonic ball made of degenerate, self-gravitating heavy neutrino matter, as it has been recently proposed by Tsiklauri & Viollier (1998a,b).Comment: AASTEX, 5 postscript figs., submitted to ApJ Let

    Ethyl 3-ferrocenyl-1-(pyridin-2-ylmeth­yl)-1H-pyrazole-5-carboxyl­ate

    Get PDF
    The title compound, [Fe(C5H5)(C17H16N3O2)], crystallizes with an essentially eclipsed conformation of the cyclo­penta­dienyl (Cp) rings. The unsubstituted ring is disordered over two positions with the major component being present 90 (1)% of the time. The substituted Cp ring, the pyrazole ring and three atoms of the eth­oxy­carbonyl group form a conjugated π-system. These 13 atoms are coplanar within 0.09 Å

    Lightest sterile neutrino abundance within the nuMSM

    Get PDF
    We determine the abundance of the lightest (dark matter) sterile neutrinos created in the Early Universe due to active-sterile neutrino transitions from the thermal plasma. Our starting point is the field-theoretic formula for the sterile neutrino production rate, derived in our previous work [JHEP 06(2006)053], which allows to systematically incorporate all relevant effects, and also to analyse various hadronic uncertainties. Our numerical results differ moderately from previous computations in the literature, and lead to an absolute upper bound on the mixing angles of the dark matter sterile neutrino. Comparing this bound with existing astrophysical X-ray constraints, we find that the Dodelson-Widrow scenario, which proposes sterile neutrinos generated by active-sterile neutrino transitions to be the sole source of dark matter, is only possible for sterile neutrino masses lighter than 3.5 keV (6 keV if all hadronic uncertainties are pushed in one direction and the most stringent X-ray bounds are relaxed by a factor of two). This upper bound may conflict with a lower bound from structure formation, but a definitive conclusion necessitates numerical simulations with the non-equilibrium momentum distribution function that we derive. If other production mechanisms are also operative, no upper bound on the sterile neutrino mass can be established.Comment: 34 pages. v2: clarifications and a reference added; published version. v3: erratum appende

    Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect

    Get PDF
    We study several aspects of the kinetic approach to sterile neutrino production via active-sterile mixing. We obtain the neutrino propagator in the medium including self-energy corrections up to O(GF2)\mathcal{O}(G^2_F), from which we extract the dispersion relations and damping rates of the propagating modes. The dispersion relations are the usual ones in terms of the index of refraction in the medium, and the damping rates are Γ1(k)=Γaa(k)cos2θm(k);Γ2(k)=Γaa(k)sin2θm(k)\Gamma_1(k) = \Gamma_{aa}(k) \cos^2\theta_m(k); \Gamma_2(k) = \Gamma_{aa}(k) \sin^2\theta_m(k) where Γaa(k)GF2kT4\Gamma_{aa}(k)\propto G^2_F k T^4 is the active neutrino scattering rate and θm(k)\theta_m(k) is the mixing angle in the medium. We provide a generalization of the transition probability in the \emph{medium from expectation values in the density matrix}: Pas(t)=sin22θm4[eΓ1t+eΓ2t2e1/2(Γ1+Γ2)tcos(ΔEt)] P_{a\to s}(t) = \frac{\sin^22\theta_m}{4}[e^{-\Gamma_1t} + e^{-\Gamma_2 t}-2e^{-{1/2}(\Gamma_1+\Gamma_2)t} \cos\big(\Delta E t\big)] and study the conditions for its quantum Zeno suppression directly in real time. We find the general conditions for quantum Zeno suppression, which for mskeVm_s\sim \textrm{keV} sterile neutrinos with sin2θ103\sin2\theta \lesssim 10^{-3} \emph{may only be} fulfilled near an MSW resonance. We discuss the implications for sterile neutrino production and argue that in the early Universe the wide separation of relaxation scales far away from MSW resonances suggests the breakdown of the current kinetic approach.Comment: version to appear in JHE

    Examining the early distribution of the artemisinin-resistant Plasmodium falciparum kelch13 R561H mutation in areas of higher transmission in Rwanda

    Get PDF
    BACKGROUND: Artemisinin resistance mutations in Plasmodium falciparum kelch13 (Pfk13) have begun to emerge in Africa, with Pfk13-R561H being the first reported in Rwanda in 2014, but limited sampling left questions about its early distribution and origin. METHODS: We genotyped P. falciparum positive dried blood spot (DBS) samples from a nationally representative 2014-2015 Rwanda Demographic Health Surveys (DHS) HIV study. DBS were subsampled from DHS sampling clusters with >15% P. falciparum prevalence, as determined by rapid testing or microscopy done during the DHS study (n clusters = 67, n samples = 1873). RESULTS: We detected 476 parasitemias among 1873 residual blood spots from a 2014-2015 Rwanda Demographic Health Survey. We sequenced 351 samples: 341/351 were wild-type (97.03% weighted), and 4 samples (1.34% weighted) harbored R561H that were significantly spatially clustered. Other nonsynonymous mutations found were V555A (3), C532W (1), and G533A (1). CONCLUSIONS: Our study better defines the early distribution of R561H in Rwanda. Previous studies only observed the mutation in Masaka as of 2014, but our study indicates its presence in higher-transmission regions in the southeast of the country at that time

    Astrophysical implications of gravitational microlensing of gravitational waves

    Full text link
    Astrophysical implications of gravitational microlensing of gravitational waves emitted by rotating neutron stars (NSs) are investigated. In particular, attention is focused on the following situations: i) NSs in the galactic bulge lensed by a central black hole of 2.6×106M2.6\times 10^6 M_{\odot} or by stars and MACHOs distributed in the galactic bulge, disk and halo between Earth and the sources; ii) NSs in globular clusters lensed by a central black hole of 103M\sim 10^3 M_{\odot} or by stars and MACHOs distributed throughout the Galaxy. The detection of such kind of microlensing events will give a unique opportunity for the unambiguous mapping of the central region of the Galaxy and of globular clusters. In addition, the detection of such events will provide a new test of the General Theory of Relativity. Gravitational microlensing will, moreover, increase the challenge of detecting gravitational waves from NSs.Comment: 5 pages, laa.sty required. Accepted for pubblication on Astronomy and Astrophysics on November, 7 200

    The Pioneer anomaly in the context of the braneworld scenario

    Full text link
    We examine the Pioneer anomaly - a reported anomalous acceleration affecting the Pioneer 10/11, Galileo and Ulysses spacecrafts - in the context of a braneworld scenario. We show that effects due to the radion field cannot account for the anomaly, but that a scalar field with an appropriate potential is able to explain the phenomena. Implications and features of our solution are analyzed.Comment: Final version to appear at Classical & Quantum Gravity. Plainlatex 19 page

    The motion of stars near the Galactic center: A comparison of the black hole and fermion ball scenarios

    Get PDF
    After a discussion of the properties of degenerate fermion balls, we analyze the orbits of the stars S0-1 and S0-2, which have the smallest projected distances to Sgr A*, in the supermassive black hole as well as in the fermion ball scenarios of the Galactic center. It is shown that both scenarios are consistent with the data, as measured during the last six years by Genzel et al. and Ghez et al. The free parameters of the projected orbit of a star are the unknown components of its velocity v_z and distance z to Sgr A* in 1995.4, with the z-axis being in the line of sight. We show, in the case of S0-1 and S0-2, that the z-v_z phase-space which fits the data, is much larger for the fermion ball than for the black hole scenario. Future measurements of the positions or radial velocities of S0-1 and S0-2 could reduce this allowed phase-space and eventually rule out one of the currently acceptable scenarios. This may shed some light into the nature of the supermassive compact dark object, or dark matter in general at the center of our Galaxy.Comment: 30 pages, 12 figures, Latex, aasms4 styl
    corecore