12 research outputs found

    A Continuum Model for Morphology Formation from Interacting Ternary Mixtures: Simulation Study of the Formation and Growth of Patterns

    Full text link
    Our interest lies in exploring the ability of a coupled nonlocal system of two quasilinear parabolic partial differential equations to produce phase separation patterns. The obtained patterns are referred here as morphologies. Our target system is derived in the literature as the rigorous hydrodynamic limit of a suitably scaled interacting particle system of Blume--Capel--type driven by Kawasaki dynamics. The system describes in a rather implicit way the interaction within a ternary mixture that is the macroscopic counterpart of a mix of two populations of interacting solutes in the presence of a background solvent. Our discussion is based on the qualitative behavior of numerical simulations of finite volume approximations of smooth solutions to our system and their quantitative postprocessing in terms of two indicators (correlation and structure factor calculations). Our results show many similar features compared to what one knows at the level of the stochastic Blume--Capel dynamics with three interacting species. The properties of the obtained morphologies (shape, connectivity, and so on) can play a key role in, e.g., the design of the active layer for efficient organic solar cells

    Numerical explorations of solvent borne adhesives: A lattice-based approach to morphology formation

    Full text link
    The internal structure of adhesive tapes determines the effective mechanical properties. This holds true especially for blended systems, here consisting of acrylate and rubber phases. In this note, we propose a lattice-based model to study numerically the formation of internal morphologies within a four-component mixture (of discrete particles) where the solvent components evaporate. Mimicking numerically the interaction between rubber, acrylate, and two different types of solvents, relevant for the technology of adhesive tapes, we aim to obtain realistic distributions of rubber ball-shaped morphologies -- they play a key role in the overall functionality of those special adhesives. Our model incorporates the evaporation of both solvents and allows for tuning the strength of two essentially different solvent-solute interactions and of the temperature of the system.Comment: 8 page

    Molecular-dynamics simulations of oxidation effects on properties of polystyrene surfaces

    No full text
    We study the effect of oxidation on the properties of atactic polystyrene surfaces by molecular dynamics simulations using GROMACS software package. The chemical modification of the polymeric surface changes its hydrophobic/hydrophilic character. We analyze the change in surface roughness upon oxidation and upon water presence. Additionally, we study the change in water structure near the surface as function of the hydrophilic character of the surface

    Numerical explorations of solvent borne adhesives : A lattice-based approach to morphology formation

    Get PDF
    The internal structure of adhesive tapes determines the effective mechanicalproperties. This holds true especially for blended systems, here consisting ofacrylate and rubber phases. In this note, we propose a lattice-based modelto study numerically the formation of internal morphologies within a fourcomponent mixture (of discrete particles) where the solvent components evaporate. Mimicking numerically the interaction between rubber, acrylate, andtwo different types of solvents, relevant for the technology of adhesive tapes,we aim to obtain realistic distributions of rubber ball-shaped morphologies—they play a key role in the overall functionality of those special adhesives.Our model incorporates the evaporation of both solvents and allows for tuningthe strength of two essentially different solvent–solute interactions and of thetemperature of the system

    Photo-degradation in air of spin-coated PC60BM and PC70BM films

    No full text
    The fullerene derivatives PC60BM and PC70BM are widely used as electron accepting components in the active layer of polymer solar cells. Here we compare their photochemical stability by exposing thin films of PC60BM and PC70BM to simulated sunlight in ambient air for up to 47 h, and study changes in their UV–vis and FT-IR spectra. We quantify the photo-degradation by tracking the development of oxidation products in the transmission FT-IR spectra. Results indicate that PC60BM photodegrades faster than PC70BM. The rate of photo-oxidation of the thin films is dependent on the rate of oxygen diffusion in to the film and on the photo-oxidation rate of a single molecule. Both factors are dependent on the nature of the fullerene cage. The faster photo-oxidation of PC60BM than of PC70BM is in agreement with its slightly lower density and its higher reactivity. The use of PC70BM in solar cells is advantageous not only because of its absorption spectrum, but also because of its higher stability

    Photo-degradation in air of spin-coated PC60BM and PC70BM films

    No full text
    The fullerene derivatives PC60BM and PC70BM are widely used as electron accepting components in the active layer of polymer solar cells. Here we compare their photochemical stability by exposing thin films of PC60BM and PC70BM to simulated sunlight in ambient air for up to 47 h, and study changes in their UV–vis and FT-IR spectra. We quantify the photo-degradation by tracking the development of oxidation products in the transmission FT-IR spectra. Results indicate that PC60BM photodegrades faster than PC70BM. The rate of photo-oxidation of the thin films is dependent on the rate of oxygen diffusion in to the film and on the photo-oxidation rate of a single molecule. Both factors are dependent on the nature of the fullerene cage. The faster photo-oxidation of PC60BM than of PC70BM is in agreement with its slightly lower density and its higher reactivity. The use of PC70BM in solar cells is advantageous not only because of its absorption spectrum, but also because of its higher stability

    A lattice model approach to the morphology formation from ternary mixtures during the evaporation of one component

    No full text
    Stimulated by experimental evidence in the field of solution-born thin films, we study the morphology formation in a three state lattice system subjected to the evaporation of one component. The practical problem that we address is the understanding of the parameters that govern morphology formation from a ternary mixture upon evaporation, as is the case in the fabrication of thin films from solution for organic photovoltaics. We use, as a tool, a generalized version of the Potts and Blume-Capel models in 2D, with the Monte Carlo Kawasaki-Metropolis algorithm, to simulate the phase behaviour of a ternary mixture upon evaporation of one of its components. The components with spin 1, −1 and 0 in the Blume-Capel dynamics correspond to the electron-acceptor, electron-donor and solvent molecules, respectively, in a ternary mixture used in the preparation of the active layer films in an organic solar cell. Furthermore, we introduce parameters that account for the relative composition of the mixture, temperature, and interaction between the species in the system. We identify the parameter regions that are prone to facilitate the phase separation. Furthermore, we study qualitatively the types of formed configurations. We show that even a relatively simple model, as the present one, can generate key morphological features, similar to those observed in experiments, which proves the method valuable for the study of complex systems

    A mesoscopic lattice model for morphology formation in ternary mixtures with evaporation

    Get PDF
    We develop a mesoscopic lattice model to study the morphology formation in interacting ternary mixtures with the evaporation of one component. As concrete potential application of our model, we wish to capture morphologies as they are typically arising during the fabrication of organic solar cells. In this context, we consider an evaporating solvent into which two other components are dissolved, as a model for a 2-component coating solution that is drying on a substrate. We propose a 3-spins dynamics to describe the evolution of the three interacting species. As main tool, we use a Monte Carlo Metropolis-based algorithm, with the possibility of varying the system’s temperature, mixture composition, interaction strengths, and evaporation kinetics. The main novelty is the structure of the mesoscopic model – a bi-dimensional lattice with periodic boundary conditions, divided into square cells to encode a mesoscopic range interaction among the units. We investigate the effect of the model parameters on the structure of the resulting morphologies. Finally, we compare the results obtained with the mesoscopic model with corresponding ones based on an analogous lattice model with a short range interaction among the units, i.e. when the mesoscopic length scale coincides with the microscopic length scale of the lattice

    Quantitative analysis of phase formation and growth in ternary mixtures upon evaporation of one component

    Get PDF
    We perform a quantitative analysis of Monte Carlo simulation results of phase separation in ternary blends upon evaporation of one component. Specifically, we calculate the average domain size and plot it as a function of simulation time to compute the exponent of the obtained power law. We compare and discuss results obtained by two different methods, for three different models: two-dimensional (2D) binary-state model (Ising model), 2D ternary-state model with and without evaporation. For the ternary-state models, we study additionally the dependence of the domain growth on concentration, temperature and initial composition. We reproduce the expected 1/3 exponent for the Ising model, while for the ternary-state model without evaporation and for the one with evaporation we obtain lower values of the exponent. It turns out that phase separation patterns that can form in this type of systems are complex. The obtained quantitative results give valuable insights towards devising computable theoretical estimations of size effects on morphologies as they occur in the context of organic solar cells.

    Roughness and ordering at the interface of oxidized polystyrene and water

    No full text
    For the first time, atomistically detailed molecular dynamics calculations revealed molecular ordering of the water-oxidized atactic polystyrene (aPS) interface. Both ordering of the water molecules and the phenyl rings occur. In addition, the natural roughness of the surface has been simulated and compared to experimental values. The composition of the simulated aPS films is based on spin-coated aPS films that have been oxidized and characterized experimentally. The aPS surfaces are oxidized with ultraviolet-ozone radiation and have been characterized by XPS, AFM, and water contact angle measurements. XPS measurements show that the oxygen content in the sample increases rapidly with exposure and reaches saturation near 24 at. % of oxygen. The molecular dynamics simulations show smoothening of an hydrophobic aPS surface upon transition from vacuum to water. The smoothening decreases with increasing hydrophilicity. The calculations reveal ordering of oxidized phenyl rings for aPS surfaces in water. The order increases with increasing hydrophilicity. Additionally, we investigated the water structure near the aPS–water interface as a function of the surface hydrophilicity. With increasing hydrophilicity, the density of water at the aPS–water interface increases. The water density profile is steeper in the presence of hydrophobic aPS. The water shows an ordered layer near both the hydrophobic and hydrophilic surfaces; the position of this layer shifts toward the interface with increasing hydrophilicity
    corecore