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a b s t r a c t

We develop a mesoscopic lattice model to study the morphology formation in inter-
acting ternary mixtures with the evaporation of one component. As concrete potential
application of our model, we wish to capture morphologies as they are typically arising
during the fabrication of organic solar cells. In this context, we consider an evaporating
solvent into which two other components are dissolved, as a model for a 2-component
coating solution that is drying on a substrate. We propose a 3-spins dynamics to describe
the evolution of the three interacting species. As main tool, we use a Monte Carlo
Metropolis-based algorithm, with the possibility of varying the system’s temperature,
mixture composition, interaction strengths, and evaporation kinetics. The main novelty is
the structure of the mesoscopic model – a bi-dimensional lattice with periodic boundary
conditions, divided into square cells to encode a mesoscopic range interaction among
the units. We investigate the effect of the model parameters on the structure of the
resulting morphologies. Finally, we compare the results obtained with the mesoscopic
model with corresponding ones based on an analogous lattice model with a short range
interaction among the units, i.e. when the mesoscopic length scale coincides with the
microscopic length scale of the lattice.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The mechanisms underlying mesoscopic and macroscopic pattern formation from local microscopic interactions
re explored in many fields of physics, chemistry, and biology [1]. Lattice-based modeling of interactions between
nits1 (magnetic spins, agents, molecules, pedestrians, colloids, etc.) can give a coherent description of real behavior
n many different situations. Well-known examples include descriptions of phase transitions, flame propagation, spinodal
ecomposition, formation of magnetization bands, acceleration shock waves in traffic flow, building of coherent groups
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E-mail address: adrian.muntean@kau.se (A. Muntean).

1 In the next sections, we will refer to these units as ‘‘particles’’. Note that ‘‘particles’’ do not necessarily mean physical entities like atoms or
olecules. They should rather be regarded as interaction sites at the microscopic level.
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in large pedestrian crowds, and molecules moving inside a cell searching for exit gates; see e.g. [2,3] and references
cited therein. In this paper, we focus on a setting inspired from work done on organic solar cells (compare e.g. [4]),
where the effect of the evaporation of a solvent – background environment for a mixture of two interacting polymers –
on the formation of polymer–polymer stable mesoscopic configurations, called here morphologies, is of strong interest.
rom the energy harvesting perspective, this is a particularly relevant subject, since one expects that the shape and
patial arrangement of morphologies can affect considerably the overall power conversion efficiency of organic solar
ells [5–7]. Conceptually related situations arise in the dynamics of interacting populations driven by different opinions
nd targets [8]. According to [3], both these applications belong to the realm of ‘‘complexity’’.
Using the framework offered by lattice-based modeling (see e.g. [9,10] for the general methodology and [11] for a

eview of the theoretical foundations), we aim at understanding to which extent the formation of stable spatial patterns
morphologies), which are obtained as a result of pair-wise interactions in a ternary mixture with one evaporating
omponent, depends on specific length scales higher than the grid size of the lattice. We refer to such larger scales as
esoscales and we label them by λ. The interest in unveiling mesoscale effects was triggered by our previous simulation

esults reported in [12–14], where we noticed the occurrence of different types of morphology shapes. The simple
bservation that the geometry of the shapes depends on the choice of model parameters (the system’s temperature,
olatility, interaction parameters, etc.) makes us wonder whether our simulation results are going to be drastically
ifferent if the overall dynamics combines information not only from a microscopic scale, but from both microscopic
λ = 1) and mesoscopic length scales (1 < λ ≪ L, with L denoting some macroscopic length scale, e.g. the size of the
imulation box). In particular, the vast separation of micro-, meso- and macro-scales is often invoked in the mathematical
erivations of macroscopic behavior, used in statistical mechanics and in the kinetic theory of gases as described for
nstance in [15–17].

Note that in [12] we explored the parameter space leading to morphologies as obtained with simulations done
xclusively at the microscopic scale (i.e., pair-wise interactions involving only the nearest neighbors of randomly selected
attice sites). We reported the corresponding quantitative analysis of the growth of patterns in the very recent study [14].
e calculated the average domain size and plotted it as a function of simulation time to compute the exponent of the
btained power law. A related work – showing how the quench rate influences morphology formation over the simulation
ime – is also [18]. Further motivation towards performing mesoscale-level simulations in a remotely related context
s mentioned in [19]; here the authors used hybrid simulations to capture disordered blends of semiconducting and
nsulating polymers to be used to prepare light-emitting diodes with increased luminous efficiency.

It is worth noting that the application of Monte Carlo type methods for the study of phase separation in multicom-
onent mixtures, often involved in the description of complex systems, has a long history which mostly connects to
omplex fluids (such as polymers, emulsions, colloidal suspensions) under shear flow. To give some examples, we refer
ere the reader to [20–23], where the last two references present stochastic dynamics involving two genuinely different
nteractions acting simultaneously — in one case, interactions are taken from superimposed lattices, while in the other
ase interacting particles and blobs are cast in the same Hamiltonian.
In this paper, we propose a two-scale lattice model capable of producing morphologies, where the interactions within

he mixture capture not only microscopic information (from pairs of spins) but also mesoscopic information (from pairs
f λ-sized blocks of spins). The structure of such a two-scale model is inspired by the setting considered in Ch. 4 of [15],
here one considers systems characterized by having the inter-atomic and mesoscopic characteristic interaction lengths
harply separated. In this context, the discussion is done in terms of Kac potentials; compare loc. cit.. Potentially, such an
pproach can provide an alternative two-scale model for which the so-called Lebowitz–Penrose mean-field limit might
e proven rigorously, at least in the absence of the evaporation process, which poses additional mathematical challenges
s it is a non-equilibrium interface process; see [24] for details on the Lebowitz–Penrose scaling of Hamiltonians and [15]
or suitable mathematical techniques to study rigorously the passage to the continuum limit. We will study elsewhere
he passage to the hydrodynamic limit in our setting. As we will see in Section 2, the proposed model incorporates both
hort-distance and long-distance interactions. Interestingly, a non-intuitive effect stands out — if a relatively low amount
f solvent (evaporating component) is present in the mixture, then one is able to zoom in and zoom out inside the
eometry of the morphologies by suitably varying the intermediate scale λ together with a proportional modification
f the size of the simulation box. This effect is a direct consequence of the scaling choice of the Hamiltonian functional
riving the dynamics. On the other hand, with the current scaling, we are unable to obtain effects close to the continuum
evel. There is a limitation on the maximum allowed λ, which depends on the choice of the simulation box size. More
ork is needed in this direction, especially if one is tempted to find a rigorous link between the morphologies obtained
ith microscopic and/or mesoscopic lattice models, as done here, with the ones obtained by means of coupled systems
f Cahn–Hilliard-type models, as for instance was performed in [25–28] and references cited therein.
Continuum (phase-field) models are powerful tools for exploring phase separation. The kind of model we are proposing

ere does not aim to compete with continuum level models, we are rather offering an alternative look at the same phase
eparation problem. Concretely, our mesoscopic lattice model simply aims to unveil what effects can be produced by
eans of spin–spin interactions combined with interactions among blocks of spins. Particularly, we wish to explore finite
ize effects (correlations) facilitated by single (micro) and two-scale (micro and micro-meso) interactions between the
ixture components. Such effects cannot be captured via a purely continuum model as the action happens at lower space
cales. It is important to note that by turning our scale parameter to be λ = 1 we recover directly our earlier results
2
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based on a purely microscopic (Blume–Capel-type) stochastic model. If λ becomes greater than unity, then secondary
cale effects are introduced in the model; however, an upper bound on the size of this secondary scale (the mesoscale) is
nherent and depends on the lattice diameter. This delimitates the usage of our model. Please bear in mind that increasing
cannot bring any information about continuum scales as our system is not scaled so a certain hydrodynamic limiting
rocedure becomes possible.
The paper is organized as follows: In Section 2, we describe the proposed mesoscopic lattice model. The main work

onsists in performing simulation tests and interpreting the results. In Section 3, we show basic simulation results obtained
or a fixed value of λ, bringing attention to a particular mesoscopic level. To fix ideas, we have selected λ = 4. We are
using this scenario to explore the effect of various parameters (mixture composition, temperature of the system, volatility,
and interaction strengths among mixture components) on the formation of morphologies. This type of numerical results
shows that our mesoscopic model is able to capture the type of results obtained in [12], i.e. we obtain expected structures
of morphologies for the given parameter regimes. Additionally, a few typical mesoscopic features (like dependence of the
morphology widths on λ and quicker stabilization of morphologies) can now be pointed out — such features arise at
each allowed choice of λ > 1. The role of Section 4 is to show specific effects that can now be probed by varying the
mesoscale length λ. Here we discover ways to investigate the interplay between changes in the model parameters and
size effects, as well as multiscale effects by observing the basic simulation output (check, e.g., Section 3) for distinct levels
of λ. In the context of this section, we also study the connection between changing λ and varying the box size of the
simulations. Section 5 concludes the paper with a discussion of our main findings as well as with an outlook on possible
further research concerning this type of interacting mixtures and related matters.

2. Model description

Lattice models with or without mean-field effects are powerful investigation tools. One of their appealing properties is
simplicity - they include just a couple of parameters and yet they are able to discover rich and complex physical effects.

To build our mesoscopic lattice model, we consider a two-dimensional rectangular lattice Λ := {1, . . . , L1}×{1, . . . , L2}
ith L1, L2 ∈ N. We endow the lattice dynamics with periodic boundary conditions. An element of the torus Λ is called
ite. To reach mesoscopic descriptions, we introduce the long-distance interaction parameter λ. Concretely, we consider a
artitioning of the lattice Λ in square cells of side λ ≪ min{L1, L2}. We end up with a lattice composed of l1 × l2 squares
ontaining λ2 sites each, where l1 := L1/λ and l2 := L2/λ. For computational convenience, we choose the values of λ, L1,
nd L2 such that l1, l2 ∈ N. Any cell X will be identified with the pair of integers (X1, X2) ∈ {1, . . . , l1} × {1, . . . , l2}.
wo cells X, Y such that X ̸= Y are said to be nearest neighbors if their euclidean distance is one. We refer to the set of
he nearest neighbors of the cell X as N (X). To account for local interactions, we introduce the bond as the set of two
earest neighboring cells {X, Y }. Each site x ∈ Λ has an associated spin variable σx ∈ {−1, 0, +1}. To model interaction

we introduce the symmetric interaction tensor J ∈ R3×3 and we adopt the notation Jα,β with α, β = −1, 0, +1. We denote
y σ ∈ {−1, 0, +1}Λ any configuration of the system on the lattice Λ and by σ∆ its restriction to ∆ ⊂ Λ. In Fig. 1, we

show the subset ∆ = X ∪ Y , composed by the cells X, Y , and their nearest neighbors, in different orientations. As main
modeling step, given two neighboring cells X and Y and given two sites x ∈ X and y ∈ Y , we consider the local energy
given by the Hamiltonian

Hx,y : σX∪Y → R+

defined as

Hx,y(σX∪Y ) := C
∑
k∈X
k̸=x

Jσxσk + C
∑
k∈Y
k̸=y

Jσyσk +

∑
Z∈N (X)
Z ̸=Y

∑
α,β

nX
αn

Z
β Jαβ

+

∑
Z∈N (Y )
Z ̸=X

∑
α,β

nY
αn

Z
β Jαβ , (1)

where for any α and Z the notation nZ
α refers to the number of particles of the species α in the cell Z , see Fig. 1.

In this case, the first two terms of the Hamiltonian capture the intra-cell energy, i.e. a mean field-like Hamiltonian
restricted to the two cells X and Y (as in [15]) with respect to the fixed sites x and y. This is given by the sum of all the
interactions between the spins at x and y with all the other sites in the corresponding cells, according to the interaction
tensor J . Hence, the first two terms in (1) are part of the Hamiltonian counting contributions from the microscopic scale.
We involve a dimensionless tuning parameter C to control the weight of the intra-cell energy with respect to the total
energy Hx,y. The last two terms of the local Hamiltonian are the cell–cell interfacial energy, which represents the inter-cell
energy. This part of the energy takes into account the interaction parameters of each combination of species weighted
by the number of particles of those species in nearest neighbors cells and builds the mesoscopic contribution in the
Hamiltonian. Since the Hamiltonian includes interactions at both microscopic and mesoscopic length scales, the resulting
model is by design a multiscale model, or better said, a micro-meso model. For the reader’s convenience, we refer to it
as mesoscopic lattice model. The mean-field part in our Hamiltonian (the one referring to the λ-cells) is an Ansatz. The aim

of this manuscript is precisely to investigate to which extent the different choices of λ matter.

3
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Fig. 1. Example of cell partition of the lattice Λ considering horizontal and vertical bonds, respectively. Periodic boundary conditions are exhibited.
The cells in green are the ones involved in the spin-swap, namely the cells involved in the bond. The cells in the nearest neighborhood of the bond
are marked in gray. From the point of view of the Hamiltonian (1) we consider the bond {X, Y } with nearest neighbors N (X)∖ {Y } and N (Y )∖ {X},
respectively. Each group of colored cells is a subset X ∪ Y ⊂ Λ.

Usually, the interaction between particles of the same species is the one with minimum energy. Hence, to achieve the
formation of morphologies, we want the energy computed with this Hamiltonian to be decreasing during the evolution
of the system.

We fix p−1, p0, p+1 ∈ [0, 1) as initial probabilities to occupy one site such that p−1 + p0 + p+1 = 1. We choose the
initial configuration2 σ 0 by setting any spin σ 0

x = i, i ∈ {−1, 0, +1} for all x ∈ Λ according to the probabilities p−1, p0
and p+1. Sometimes, it will make sense to replace the probabilities pi with the actual percentages. We can now define
p∗ := p+1/(1− p0). We make use also of two additional parameters: the volatility3 parameter φ ∈ [0, 1] and a parameter
β > 0, such that kBT = β−1 is the thermal energy of the considered system, involving the Boltzmann constant kB. Finally,
we fix as stop parameter, called p⋆

0, a certain percentage of the remaining solvent in the lattice. This stop parameter, called
stop in the code, defines implicitly the final observation time Tf of our mesoscopic model. It is worth noting that in our
approach we cannot link directly the stop parameter with the correct estimation of the real time needed to build the
morphology. Instead, to quantify the length of the simulations, we record the number of iterations needed to satisfy the
stopping criterion. Therefore, the last configuration is denoted by σ Tf and will be the one with a percentage of remaining
solvent less than or equal to the one defined by the stop parameter p⋆

0. Our volatility parameter φ can have multiple
interpretations. They range from the tendency to move upwards due to density differences, buoyancy, gravity effects, or
maybe even something else. In the context of this paper, our focus lies on λ and not on φ. We did include the case φ = 0
in our results, but we allowed as well φ > 0 just to check for a possible interplay between λ and φ with respect to the
morphologies structure. Note that we did discuss the role of φ on the morphology formation for the case λ = 1 in our
earlier papers [12].

We consider the lattice to be oriented as in Fig. 2. We divide the lattice into square cells of size λ ≪ min{L1, L2} to
include the effects of a long distance interaction energy. The mathematical model is based on the discrete-time Markov
chain Monte Carlo method; see for instance [10]. After selecting a bond, we want to capture a combination of inter-related
processes: the evaporation of solvent from the top layer of the lattice, the vertical movement of the solvent through the
considered region driven by its volatility and biased by the interaction with the other mixture components, the diffusion
and interaction of all mixture components within the lattice. We propose a Metropolis-type algorithm, completed with
volatility and evaporation rules, as follows:

1. select a cell bond {X, Y } in a uniformly random fashion;
2. select a site for each cell in the bond uniformly at random, namely x ∈ X and y ∈ Y ;
3. if X = (l1, X2), Y = (1, X2) and σy = 0, then replace the zero with +1 with probability p∗, otherwise with −1.

Update p∗ according to the new percentages of particles p−1, p0, p+1. This is the evaporation of the zero (red)
particle;

4. if X = (X1, X2), Y = (X1 + 1, X2) and σy = 0, with X1 < l1, then exchange the two spins with probability φ. This
is the volatility of the zero (red) particle;

2 The number of iterations mimics the role of a discrete time variable t ∈ [0, Tf ], where Tf is the final ‘‘observation time’’ corresponding to the
ast performed iteration. Note that t does not account for the real time. At every t , the observed configuration is called σ t . For convenience, the
onfiguration at t = 0, i.e. σ 0 , is called ‘‘A’’ in the code, while for t > 0, σ t is called S. Additionally, we define a configuration S1 for the code. The
atter is the configuration S with two swapped spins, as explained later on in this section.
3 The term ‘‘volatility’’ refers here to a drift leading the solvent particles towards the evaporation surface. It has nothing to do with the physical

oncept of volatility. The analogue name is used since such a break of symmetry applies only to one of the components of the mixture, i.e. to the
otentially ‘‘volatile’’ one.
4
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Fig. 2. Orientation of the lattice Λ for L1 = L2 = 16 and cell sizes λ = 2 (left) and λ = 4 (right). The sites with yellow, red, and respectively, blue
colors represent boxes containing particles with spin −1, 0, and +1, respectively. We also see here the details inside the cells X and Y appearing
in Fig. 1.

5. otherwise swap the two spins, then consider the unswapped configuration S and the swapped one S1 on X ∪ Y .
Compute ∆H = Hx,y(S1)−Hx,y(S) according to the Hamiltonian (1), that is the difference between the evolution of
the Hamiltonian for the new and for the previous configuration. Accept the exchange with probability 1 if ∆H < 0
and with probability exp{−β∆H/λ2

} otherwise. This is the regular Metropolis step4

In this context, the evaporation step takes place every time the selected cell Y is on the top boundary of the lattice and the
selected bond is vertically upwards. The here imposed conservation of mass requires the replacement of the evaporating
solvent particle by a particle belonging to any of the other two species, with a probability that depends on the ratio of
the other two species. Imposing the conservation of mass is a rather unrealistic assumption when speaking about real
evaporation processes and this part is open to further developments.

Beside the regular dynamics imposed on all species, we add an additional bias for the solvent particles to move
upwards, represented by the volatility step through the probability φ. We take φ to be independent of temperature.
Various options for an eventual coupling between volatility, temperature, and eventually also λ are potentially possible,
but it is not clear-cut what the right dependence is. Here, we build our two-scale interaction model upon our previous
single scale approach cf. [12] and use the same evaporation model as presented there5

The last step in the algorithm allows a decrease in the local energy of the system via the Metropolis rule. According
to the interaction tensor, morphologies arise during the downhill evolution of the local energy of the system provided by
this last step. We point out here an additional potentially important role of the parameter λ that defines the size of the
cells (block spins, cf. the terminology from [15]) in the lattice, namely λ enters as a tuning parameter in the probability
exp{−β∆H/λ2

} computed in terms of β and ∆H . Essentially, we use the mesoscopic size of the cells to normalize the
difference of energy with respect to the number of particles in a single cell, that is λ2. Lastly, the process stops when the
percentage of red particles (say p0) is lower than the stop parameter defined above.

Note that a Markov chain is said to be ergodic if it is possible to reach in a finite number of steps every configuration
of the system starting off from an arbitrary initial configuration. Having this definition of ergodicity in mind, our system
is not ergodic due to the way we implement the evaporation part of the system. For our purposes, we assume that we
can reach the configuration σ Tf in a finite number of steps, hence in a finite time interval.

The mesoscopic model proposed here is very much inspired by the one developed in [13] and is an extension of
the lattice model proposed by Cirillo et al. in [12]. In our earlier work, we referred to it as the λ-model. In the next
sections, we explore by means of numerical simulations the capacity of our model to produce morphologies when both
short distance and large distance interactions interplay. The hope is to spot genuine mesoscopic effects by comparing our
simulation output with previous work done in [12,13,30] with microscopic versions of this model (i.e., when λ = 1). It is
worth mentioning already at this stage that our mesoscopic model can be linked with what is observed based on purely
microscopic descriptions, but is unable to reach mean-field information, i.e. when λ = min{L1, L2}. One way to facilitate

4 As for now, our approach is not designed to sense ‘‘time’’. To get a sense of the time evolution of the overall process (in the vicinity of stationary
states), possible extensions of our work could include the use of a kinetic Monte Carlo approach instead of the Metropolis algorithm, see Section 5
for further comments, or perhaps we could rephrase the overall modeling in terms of a large coupled system of Langevin-type equations, see [29]
for a starting point.
5 This is done for the sake of consistency so that the reader’s attention can be focused mainly on mesoscopic effects.
5
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the latter connection is to rescale suitably in terms of λ the structure of the Hamiltonian, including changing the factor
into C(λ) as well as considering the simulation box as Λ(λ). Inspiration from the Lebowitz–Penrose scaling indicated

n [15] can be useful in our context. To understand this connection, one needs to perform a suitable asymptotic analysis
ossibly invoking renormalization arguments; see e.g. [31] for related ideas. This is though out of the scope of this paper.

. Basic simulation results

In this section, we investigate the effects produced by the different parameters on the shape and size of the formed
orphologies. The parameters involved in the simulations reported in this section are the ones independent of the

nteraction length scales in the system. The main difference compared to [12,13] is that here we mainly consider the
ase of a non-vanishing volatility parameter to be φ. Particularly, we analyze:

• whether the phase separation is occurring or not, depending on the temperature of the system, by changing β;
• how the shape of formed morphologies and the evaporation time are altered by the volatility parameter φ of the

solvent;
• effects of the interaction parameter between the non-evaporating species, i.e. J+1,−1, on both the phase separation

and the shape of morphology formations;
• how the initial ratio of species, given by the initial probabilities p−1, p0 and p+1, affects the shape of morphology

formations.

To perform the simulations, we build a code in Python [32,33] for its ease of use and its flexibility. We mainly use the
module NumPy6 to build and modify the lattice and the module Matplotlib7 to print out the lattice as a figure. To handle
a large number of simulations that require an intensive computational effort, we run our code on the supercomputer
Kebnekaise, provided by High Performance Computing Center North (HPC2N8) of the Swedish National Infrastructure for
Computing (SNIC9)

Performing simulations allows us to reach different morphology shapes at different iterations capturing the large time
stationary behavior of our system. By displaying graphically the obtained morphologies, we want to understand the role
our parameters play in the process of evaporation of the solvent through the surface of a thin film (described by our
lattice), corresponding to the vertical cross-section of a 3D box. We choose the reference set of parameters to correspond
to what is investigated in [30] by means of a microscopic lattice-based model involving a short range interaction energy,
that is λ = 1. This allows us to test the code and facilitate eventual future comparisons of results. The comparison with
the results reported in [12,13] is done for the case φ = 0, as shown later on. This choice of parameters seems to offer
the closest representation of the physical situation.

In this section, we consider a lattice containing 128 × 128 particles divided in yellow (with spin -1), red (with spin
0, the solvent that is evaporating), and blue (with spin +1), endowed with periodic boundary conditions. The size of the
cells is fixed to be λ = 4. The initial configurations are randomly generated according to the initial probabilities p0 = 0.4,
p+1 = 0.3, and p−1 = 0.3. This choice defines an initial mixture composition of 40:30:30 that is kept in the simulations.
In this case, the initial configurations are similar to the one shown in Fig. 3.

The tuning parameter C entering as a factor in the structure of the Hamiltonian (1) is fixed to be C = 1. Moreover, the
energy parameters are set to be as indicated in the following symmetric tensor:

J :=

[J−1,−1 J−1,0 J−1,+1
J0,−1 J0,0 J0,+1
J+1,−1 J+1,0 J+1,+1

]
=

[0 1 6
1 0 1
6 1 0

]
. (2)

For the first round of simulations, we fix the volatility parameter to φ = 0.6 and look for morphology formations as
β changes. The other parameters are fixed as above. In each row of Fig. 4, we display snapshots of the evolution of our
systems for different temperatures when the percentage of remaining solvent is the 75%, 50%, 25% and the 10% of the initial
content of solvent. In this case, with a lattice containing 128 × 128 particles of which 40% is solvent, those percentages
correspond to 30%, 20%, 10%, and 4% of the total amount of particles, respectively. We notice that the temperature plays
an important role in the phase separation of the components: if the temperature is extremely high, i.e. in the limiting
case in which β vanishes, we do not reach any morphology formation. Indeed, in this particular case the thermal energy
kBT = β−1 is much larger than the spin–spin interaction term Jσxσy , in the Hamiltonian (1), hence spins randomly exchange
in an uncorrelated fashion.

As shown in Fig. 4, we notice the first hints of phase separation if we consider a lower temperature, i.e. a higher value
of β . Already for β = 0.1 we see a small decrease of the energy in the system during the evaporation process: particles are
arranged in interpenetrated formations, but all the species are still mixed in those stains and sharp interfaces between the

6 https://numpy.org/doc/stable/.
7 https://matplotlib.org/contents.html.
8 https://www.hpc2n.umu.se/.
9 https://www.snic.se/.
6
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Fig. 3. Initial configuration σ 0 generated using initial proportion 40:30:30 for the red, blue, and yellow particles, respectively. The considered lattice
contains 128 × 128 particles, divided into square cells of size λ = 4. If not otherwise specified, each simulation starts from a configuration of this
kind.

Fig. 4. First set of simulations. In this case, the volatility parameter is fixed as φ = 0.6 to study the effect of the temperature. In the columns, we
ave 75%, 50%, 25%, and 10% of remaining solvent from the initial amount. We notice that for high temperatures (e.g., β = 0.1) we do not reach
orphology formation. The required number of steps to reach the 10% of remaining solvent is 8.58 · 106 for β = 0.1, 8.30 · 106 for β = 0.2, and
.51 · 106 for β = 0.6.
7
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Fig. 5. Monotonicity in the number of iterations versus the volatility parameter φ. This behavior correlates with the fact that simulations are faster
hen morphologies arrange in vertical strips. The number of iterations goes from 827.24 · 106 (case φ = 0), to 4.96 · 106 (case φ = 1).

egions are not very clear/smooth. Considering β = 0.2, we notice a clearer distinction in the phase separation between
lue and yellow particles. However, solvent particles are mixed inside the produced morphologies and it is quite likely
hat they will move away after a sufficiently long time has elapsed. Finally, if we consider a much lower temperature
= 0.6, the energy finds easier the desired minima. This results in the tendency of the solvent (red) to play the role of

he perimeter for the blue and yellow-colored areas. Since the number of steps is fluctuating, we are unable to notice a
lear trend in the number of steps needed to reach the stop parameter. In this case, we need a range from 8.58 · 106 (for
= 0.1) to 8.30 · 106 (for β = 0.8 and β = 0.2) in the number of iterations to reach the 10% of remaining solvent. The

ormed lanes shown in Fig. 4 (last row) can be perceived as a steady state since their thickness does not change anymore.

Having in mind the meaning of the volatility parameter φ, we can speed up the evaporation process by increasing
he volatility of the solvent. We see in Fig. 5 the following effect: as we increase φ for a fixed β , we notice a strict
onotonically decreasing trend in the required number of iterations to reach the stop parameter of 10% solvent. The
ffect is huge already for a small φ > 0. The number of iterations goes from 827.24 · 106 for φ = 0, to 4.96 · 106 for
= 1. We could use a polynomial of order 10 to interpolate the number of iterations but we notice that we have a better

it with the exponential function 8.17 · 108
· e−31.46·x

+ 9.70 · 106 (shown in Fig. 5). This effect is related to the volatility
tep of the algorithm: if we consider a high value of volatility parameter, then the probability of the solvent reaching the
op of the lattice is higher, otherwise, it mostly depends on the Metropolis step, hence on the Hamiltonian (1). The role
f the volatility parameter is not just to speed up (or slow down) the evaporation time. It also plays an important role
n the final shape of morphology formations. In Fig. 6, we study the different morphology shapes obtained for different
alues of φ if we fix β = 0.8. Also in this case we show (from left to right) the evolution of the system when we reach
he 75%, 50%, 25%, and 10% of remaining solvent, respectively. In the first row, we consider φ = 0. The complete absence
f volatility yields the formation of a bi-continuous morphology with no preferential orientation, since the solvent is not
orced to go upwards, but only moves upwards in a diffusive mode. The only way for the solvent to reach the top of the
attice depends on λ, β , and the Hamiltonian (1) in the Metropolis step. This also leads to a longer evaporation time, as
hown in Fig. 5. If we choose φ = 0.1, we already see the effect of the volatility, resulting in almost vertical stripes for the
orphologies. While for the 75% of remaining solvent we still have some stains, with the evaporation process those stains
re deformed in the direction of evaporation. If we increase the volatility to φ = 0.5, we notice that the vertical stripes
re thinner. A similar situation arises for the case φ = 0: in the absence of solvent, the two remaining species are not
orced anymore to follow the vertical evaporation and they are reorganized following the Metropolis step. The same effect
s better emphasized in the lower half of the lattice, for the case φ = 1, due to a faster evaporation of the solvent. In this
imiting case, the vertical stripes are thinner, hence we obtain morphologies with predominant stripe-shaped patterns.10

Now, we want to study which effects can be obtained when varying the value of the interaction parameter between
he non-evaporating species, namely when changing J+1,−1. In Fig. 7, we fix β = 0.6, φ = 0.6, the interaction tensor as

J :=

[ 0 1 J+1,−1
1 0 1

J+1,−1 1 0

]
nd we display the evolution of the system for 75%, 50%, 25% and the 10% of remaining solvent, respectively. Similarly to
he limit case when β is going to zero, we see that if we consider J+1,−1 = 0.1 ≪ J0,+1 = J0,−1 = 1, then we do not reach

10 Such vertical morphologies are likely to correspond to a locally-periodic of disc-like patches seen experimentally as a top view of the film.
8
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Fig. 6. The temperature is fixed such that β = 0.8. In the columns, we have 75%, 50%, 25%, and 10% of remaining solvent from the initial amount.
We notice that for a small value of the volatility parameter (φ = 0) we get stain-shaped morphologies, while increasing φ (already from φ = 0.1)
e get vertical stripes.

he separation of phases. In this case, the interaction between the blue and yellow particles is too weak compared to the
nteraction with the solvent to be able to lead to any morphology formation. Increasing this interaction to J+1,−1 = 0.9,
s shown in the second row of Fig. 7, we do not notice a distinct phase separation. The presence of blue particles in each
ellow area and of yellow particles in each blue area is not negligible, so we do not reach a clearly shaped morphology.
ooking at the case J+1,−1 = 2, we already see a strong phase separation, mainly composed of eight blue and yellow
ertical stripes.
One may wonder why the morphologies are slanted in this particular case (see third row), and whether this effect is

onnected to some suitable combinations of model parameters. This is not the case and the observed effect is not robust
ith respect to changes in parameters. Such skewed orientations seem to appear due to a twofold reason: the blue and
ellow particles are constrained to satisfy periodic boundary conditions and the total phase separation takes place rather
ast reaching stationarity. Consequently, local agglomerations of blue/yellow particles at the top or bottom boundaries
re likely to nucleate fast growing elongated morphologies.
9
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Fig. 7. Fixing temperature and volatility parameters as β = 0.6 and φ = 0.6, we change the interaction parameter acting between blue and yellow
articles. The columns indicate results for 75%, 50%, 25%, and 10% of remaining solvent from the initial amount. In the first row, we use J+1,−1 = 0.1,
n the second J+1,−1 = 0.9, in the third J+1,−1 = 2, while in the last one we take J+1,−1 = 15.

Apparently, there is something else that plays a stronger role in this skewed formation than periodic boundary
onditions: the evaporation process has a considerable dependence on initial conditions. To clarify this aspect, we show
n Fig. 8 the evolution for 75%, 50%, 25%, and 10% of remaining solvent for different boundary conditions on the lattice.
he parameters are fixed as in the third row of Fig. 7, i.e. fixing J+1,−1 = 2. In the first row, we present the case with
ully periodic boundary conditions, as defined in Section 2. Here, the parameters and boundary conditions are the same
s the third row of Fig. 7, however, the slightly different initial configuration results in a completely different domain.
omehow, the main direction of the morphologies is vertical even if there is still a skewed branch connecting through
he bottom–top periodicity. The last row of Fig. 8 shows the evolution when bottom–top reflecting boundary conditions
re used. We still consider a left–right periodicity, but we do not consider periodic boundary conditions over the top and
ottom boundaries, i.e. we do not consider two sites x, y in cells X = (l1, x2), Y = (1, x2) as nearest neighbors and we do
ot compute the energy over the vertical periodicity if the two cells involved in the bond are close to the top or to the
ottom.
10
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Fig. 8. We chose the case J+1,−1 = 2. Fixing temperature and volatility parameters as β = 0.6 and φ = 0.6, we change the boundary conditions. The
olumns indicate results for 75%, 50%, 25%, and 10% of remaining solvent from the initial amount. In the first row, we use fully periodic boundary
onditions (as defined in Section 2), while in the second we use reflecting boundary conditions at the top and at the bottom of the lattice.

It is interesting though to note that, for the chosen parameter regime and regardless of the choice of boundary
onditions, the first two panels of each row in Fig. 8 indicate the occurrence of a dry crust close to the top boundary.
s a follow-up question, we could explore in which way the thickness of such crust depends on key parameters like
olatility or temperature.
Considering an even stronger interaction, namely J+1,−1 = 15, we get a similar effect as for high values of φ: the

vertical stripes are thinner in the upper half of the lattice, while in the lower half we notice some horizontal link among
the formations since keeping more areas linked together minimizes the energy of the system. For bigger values of J+1,−1,
we see that the vertical stripes are a little bit thinner but the general structure remains the same as the case J+1,−1 = 15.

It is worthwhile to also observe the rather thick lanes of solvent particles pointed out in the first two panels of Fig. 7
(first row). They appear because the amount of solvent particles in the system is sufficiently high and their interaction
strength with respect to the neighboring environment (i.e. the blue and yellow particles) is high. This situation is likely
not to happen in the context of organic solar cells. Interestingly though, a very similar situation like the one mentioned
here occurs when large crowds of charged colloids [34] or of self-driven particles like human crowds [35] or large fish
communities [36] anticipate the position of the wanted exit and collectively adapt their dynamics to reach it. The top
interface, where the solvent evaporates, plays the role of the exit in such context and the red particles would be the active
agents. This type of results indicate that our model is likely to find applications in the context of socio- and econophysics.
We will exploit alike connections with population dynamics elsewhere.

As a last simulation in this section, we study how the geometry of the morphologies is affected by choosing different
initial ratios of the species involved in the mixture. We fix the temperature and volatility parameters to be β = 0.6,
φ = 0.6, while the interaction tensor is as stated in (2). In Fig. 9, we show the initial configuration and the corresponding
evolution with 75%, 50%, 25%, and 10% of remaining solvent. We recall that the initial ratio is defined by the percentages
p0 : p+1 : p−1, the considered cases are 20:40:40, 40:30:30, and 80:10:10. We notice that the phase separation is not
affected by the initial ratio of species, while the shape of morphologies is altered. However, the evaporation time is
higher if we have more solvent in the initial lattice. For a high initial percentage of solvent, we also observe that we have
less links among the vertical morphologies. Starting from the case 20:40:40, we see that the formed morphologies do not
follow just the vertical direction of evaporation: in this case, the percentage of solvent is too low to force the other two
species to align upwards, resulting in a couple of horizontal morphologies. Here, the morphology obtained for the 10%
of remaining solvent is quite similar to the one with the 75%, due to a fast evaporation process. For this ratio, the 75%
of remaining solvent already corresponds to the 15% of total particles. Already from the case 40:30:30, the stripes are
thicker and less linked among them. In this case, the scenario at the 75% of remaining solvent is different than the end,
when we have the 10%, since the evaporation is much longer than in the previous case. Indeed, as specified beforehand,
for the case with ratio 20:40:40 the percentage of solvent with respect to the total particles is not enough to drive the
formed domain to a considerably different shape. When we consider 80:10:10 as the initial ratio, we observe just eight
blue and yellow main stripes in the morphology. This effect is a consequence of the high initial percentage of solvent:
11
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Fig. 9. Temperature and volatility parameters are fixed such that β = 0.6 and φ = 0.6. The interaction tensor is the one defined in (2). In the
columns, we plot the initial configuration (100% of the initial amount of solvent) and the corresponding evolution with 75%, 50%, 25%, and 10% of
remaining solvent from the initial amount. In the first row, we have 20:40:40 as initial ratio of species, for the second 40:30:30, while for the third
we take 80:10:10. We notice that for the third case, the vertical stripes are wider due to the considerable migration of solvent.

even if the evaporation process is longer, the upwards movement of this amount of solvent drives the morphologies to be
shaped in a few vertical straight stripes. For this initial ratio, the 75% of remaining solvent is still too much to appreciate
a morphology formation, since that corresponds to the 60% of total particles (with respect to the 30% of total particles for
the case 40:30:30).

Unlike to what was seen in [12], the formed domains look rather similar at top and bottom interfaces due to the
boundary conditions. Moreover, as we notice later on in Section 4, the width of the formed morphologies is clearly
influenced by the size of the chosen mesoscale λ.

4. Multiscale effects on morphology formation

In this section, we explore the effects of varying the range of long distance interactions which can be seen at the
scale of morphology formation. The parameters that we analyze are the ones involving the size of the lattice (simulation
box) and of the cells (spin blocks). We probe different interaction scales for the same choice of reference parameters. In
particular, we examine:

• repercussions on the scale of the morphologies of the lattice size, by changing L1 and L2;
• how the mesoscale length λ, defining the size of the interaction cells, affects the formation of morphology for a fixed

size of the lattice;
• interplay between the parameter λ and the lattice size;
• effects of the tuning parameter C , arising in the Hamiltonian (1), on both the phase separation and shape of the

morphologies.

hese numerical experiments are meant to help us understand how to rescale the system so that increasingly larger values
f λ can be taken without increasing too much the size of the simulation box. The simulations will indicate that there is
clear connection between these two parameters. Similarly as in Section 3, the results are explained by displaying the
raphical output of the listed simulations and by noticing the corresponding number of iterations.
To run the simulations proposed in this section, we fix a target morphology formation, hence we select the model

arameters from in Section 3. Particularly, we choose the volatility φ = 0.6, the temperature β = 0.6, while the
nteraction tensor is as defined in (2). For the initial ratio of the mixture components, we set 40:30:30. Moreover, we
12
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Fig. 10. Temperature and volatility parameters are fixed such that β = 0.6 and φ = 0.6. In the columns we have the initial configuration (100% of
he initial amount of solvent) and the evolution with 50% and 25% of remaining solvent from the initial amount. In the first row we consider the
ize of the lattice to be 128 × 128, in the second one 256 × 256, in the third one 512 × 512.

ake as simulation box size 256 × 256 and λ = 4 as cell size. The tuning parameter entering the Hamiltonian (1) is C = 1,
nless otherwise specified. In this section, we show the initial configuration in every presented figure.
Firstly, we consider the effects of different box sizes. The parameters are fixed as above, except for L1 and L2. In Fig. 10,

e display the initial configuration (with 100% of solvent) and the evolution with 50% and 25% of remaining solvent. In
he first row we consider the box size to be 128 × 128 (with 6519 red particles), in the second 256 × 256 (with 26481
ed particles), while 512 × 512 (with 104881 red particles) in the third. Clearly, if we consider a lattice with more solvent,
he evaporation process will be longer and will exceed a reasonable simulation length; see Section 3. Considering that in
he case 512 × 512 the lattice contains an excessive amount of solvent and it took almost six days on the supercomputer
o reach the 25% of remaining solvent, we avoid for this round of simulations to display the 10% column.

It may seem that if we consider a bigger box size, then we are just experiencing a ‘‘zoom out’’ of our system. However,
e also notice that the structure of the formed morphologies is slightly different. We start from the first row of Fig. 10,
hich displays the usual morphology visible in the last row of Fig. 4 and in the second row of Fig. 9. Moving the attention
o the second row, i.e. the case 256 × 256, we notice that the average width (in terms of lattice sites) of the morphology
s the same. However, in the lower half of the lattice, we observe more horizontal links among the morphologies than in
he upper half. As in the case shown in the last row of Fig. 9, the stripes seem to be steeper in the top half of the lattice
ue to the upward movement of the great amount of solvent. Lastly, we see the same behavior if we move from the
econd to the last row, i.e. the 512 × 512 case. Here, the average width of the formed morphologies is still the same as in
he first row. Most of the horizontal links among the vertical stripes are concentrated in the lower quarter of the lattice,
13



M. Setta, V.C.E. Kronberg, S.A. Muntean et al. Communications in Nonlinear Science and Numerical Simulation 119 (2023) 107083

s

w
I
d
i
o
i
t
F
t

a
M
m
F
c
u
p
3
o
t
w
t
f
a
c
h
r
s
m
a

t
l
S

Fig. 11. Shrinking the lattice: for a low percentage of remaining solvent the morphology formations in the lower quadrant of a lattice are looking
imilar to the one in the lattice with the same size of the quadrant; in the upper area the morphologies are mostly vertical stripes.

hile in the remaining part of the lattice the shape of morphologies is similar to the upper half of the case 256 × 256.
n Fig. 11 we display that the morphology close to the interface is not subject to finite-size effects. Specifically, if we
isplay the 512 × 512 lattice with the 25% of remaining solvent from the last row of Fig. 10, one of its lower quadrants
s a 256 × 256 lattice with similar morphology as the last evolution of the 256 × 256 configuration in the second row
f Fig. 10. We can follow the same reasoning as we shift from one of the lower quadrants of this 256 × 256 lattice, that
s a 128 × 128 lattice, to the proper evolution of the lattice in the first row of Fig. 10. It is worthwhile to observe that
his effect holds only if the percentage of remaining solvent is small enough. A similar feature has been pointed out in
ig. 10. If we consider the evolution at 50% of the studied cases, most of the solvent is still in the central belt of each of
he presented lattices, hence such feature is lost.

We can now switch to considering the effects of different spin block sizes, namely we alter the parameter λ influencing
fore studied interactions at the mesoscopic level. We chose the remaining parameters as specified above in the section.
oreover, from the latter paragraph, we know that we can consider a bigger lattice, i.e., with box size 256 × 256, with
inimal loss of generality. The size choice for this simulation is forced by the values of λ that we want to analyze. In
ig. 12, we show the case λ = 2i, i = 0, 1, 2, 3, while in the column we display the initial configuration and the
orresponding evolution with 75%, 50%, 25%, and 10% of remaining solvent. Since we need λ ≪ min{L1, L2}, we prefer to
se a bigger box size when it comes to the case λ = 8. We observe that the size λ can also speed up (or slow down) the
rocess: we start with 2.79 ·108 iterations for λ = 1, then 2.22 ·108 for λ = 2, subsequently 9.73 ·107 for λ = 4, and lastly
.44 · 107 iterations for λ = 8. For a bigger value of λ, the evaporation is faster because the particles in the lower area
f the lattice can freely move from one box to another, whilst if we consider the case λ = 1, a particle in the bottom of
he lattice has to ‘‘travel’’ across every single site before evaporating. The case λ = 1, shown in the first row of Fig. 12, is
idely studied by means of a microscopic lattice-based model driven by a local interaction Hamiltonian in [30]. Moving
o the second row, we have the case λ = 2 that presents a thicker morphology than the previous case. We also notice
ewer independent vertical stripes. In the third row, we can find the case λ = 4. For this spin block size, the morphologies
re even wider and with more horizontal agitation. Lastly, we have λ = 8 in the last row. This case seems similar to the
ases studied in Section 3, as well as the first row of Fig. 10. These similarities come from a wide morphology with similar
orizontal links. As we can understand from the foregoing comments, the spin block size plays an important role in the
escaling of the system, as it defines the length scale of interaction in the Hamiltonian (1). Particularly, by increasing this
ize, we are decreasing the number of stripes in the formations. In fact, we are increasing the relative thickness of the
orphologies with respect to the box size. It is noteworthy that if we use the spin blocks as measurement units, then the
verage width of the morphologies is the same for the presented values of λ.
In view of the last two paragraphs, we can spot some interconnections between the rescaling with the box size and

he one with the spin block size. If we analyze Figs. 10 and 12 together, we can conclude that if we consider a 256 × 256
attice and change λ accordingly, then we are able to reach morphologies that are similar to those of different box sizes.

pecifically, visible correlations can be pointed out between:

14
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Fig. 12. Parameters are fixed such that β = 0.6, φ = 0.6, J as in (2), C = 1, and L1 = L2 = 256. In the columns, we display the initial configuration
(100% of the initial amount of solvent) and the corresponding evolution with 75%, 50%, 25%, and 10% of remaining solvent from the initial amount.
In the rows, we set λ = 1, λ = 2, λ = 4, and λ = 8, respectively.

• λ = 4 for Lk = 128, k = 1, 2 and λ = 8 for Lk = 256, k = 1, 2;
• λ = 4 for Lk = 512, k = 1, 2 and λ = 2 for Lk = 256, k = 1, 2.

We expect that, while keeping those different proportions between the box and the spin block size, we can rescale
our overall system so that the structure of the morphology shapes is preserved. This would bridge information between
two distinct mesoscales.

As last set of simulations, we examine the effect of the tuning parameter C , stemming from the Hamiltonian (1). The
purpose of this dimensionless parameter is to weigh the intra-cell energy with respect to the total energy. We fix the set
of reference parameters as stated at the beginning of this section. We consider the cases C = 0, C = 0.1, C = 1, and
C = 10. In Fig. 13, we illustrate the initial configuration and the corresponding evolution with 75%, 50%, 25%, and 10% of
remaining solvent. In the first row of Fig. 13, we look at the results for C = 0. Here the morphology formation is striped
but, since the intra-cell energy is completely neglected, we can find more solvent than usual in the morphologies, also
with some impurities, i.e. blue particles in the yellow zones and vice versa. In the second row, we consider C = 0.1. This
case leads to sharper formations. We also see that now the vertical stripes are really straight. In the third row, we display
the case used for the other simulations when C = 1. Using this value for the tuning parameter, morphologies become
visible already from the 75% of remaining solvent. Finally, the effect of C = 10, shown in the last row, is remarkable.
Although phase separation takes place, morphologies seem to meet difficulties to form coherent structures. Most of the
spin blocks are filled by particles of the same species, while the location of spin blocks containing the same species is
not regular enough to define a morphology. Nonetheless, we did expect this effect to happen as setting C = 10 makes
the intra-cell energy disproportionate with respect to the inter-cell interaction. If we consider this tuning value in the
Metropolis step, hence in the Hamiltonian (1), the inner energy of every spin block is playing a pivotal role, while the
15
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Fig. 13. We fix β = 0.6, φ = 0.6, J as in (2), L1 = L2 = 256, and λ = 4. In the columns, we consider the initial configuration (100% of the initial
mount of solvent) and the corresponding evolution with 75%, 50%, 25%, and 10% of remaining solvent from the initial amount. In the first row we
ave C = 0, in the second C = 0.1, in the third C = 1, while in the last one C = 10.

interfacial energy between two cells is almost neglected. We still observe a few vertical links among the spin blocks,
but it is mainly because of the upwards movement of the solvent. Even if this situation was foreseeable, it is useful to
see the impact on the overall morphology. It would be interesting to unveil a physical interpretation for C , of particular
importance would be to which extent C holds information on an eventual λ-dependence.

5. Discussion and outlook

The simulation tests and the corresponding discussions of the observed effects reported in Sections 3 and 4 do not
cover all possible scenarios. An exhaustive discussion of the case λ = 1 is done in [12]. Within the framework of this
aper, we aimed:

1. to show the capability of the model to produce coherent morphologies at any characteristic mesoscopic length λ

sufficiently smaller than the simulation box size, and
2. to explore eventual connections between simulations and morphologies obtained using different values of λ and

eventually also different volumes of simulation boxes.

Our study opens a number of paths for possible further research exploiting further this multiscale model. We mention
ere only a few ideas that we deem as being more prominent:
One important feature of our model is the evaporation dynamics. As this is a truly non-equilibrium process, we believe

hat a kinetic Monte Carlo approach could be suitable. Besides comparing kinetic Monte Carlo outputs against our results
ased on the application of the Metropolis algorithm, we could also address new questions, such as:
16
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• How does the flow of solvent change with the parameters?
• How does the dynamics of the solvent influence the dynamics of the morphology aggregation?

In particular, such a framework would open the possibility to reduce perhaps the overall model to tracking only the
solvent evolution, while still preserving some grip on the morphology formation. This approach would likely lead to a
formulation of the solvent evolution in terms of a continuum model; compare as well with the findings from [37].

If one has in mind the applicability of this model to practical questions concerning organic solar cells, then one major
ifficulty is to set up a computable observable that can be investigated de facto in an experiment producing morphologies.
sually, as pointed out for instance in [38], in the laboratory one has access to a top view height scan of the morphologies
s measured by Atomic Force Microscopy (AFM), while our simulations deliver a transversal view on these internal
tructures. We believe that using a kinetic Monte Carlo approach would allow a better understanding of the physical clock
f morphology formation. Moreover, extending our implementation of our mesoscopic model to a 3D version would allow
better insight as well as a good match to the AFM images, in which variations in the height of the top surface of the

ilm are shown. For this to happen, besides extending the model, a massive computational effort is needed. Should this
e successful, then the triad of methodologies (theoretical, experimental, and computational) would then be integrated to
ake possible an adequate attack of the central two-fold question: Which morphology is best suited for organic solar cells
nd how to control it? Addressing this question requires in-depth quantitative measurements of the robustness of the
ormed morphologies with respect to small changes in the model parameters. The investigation of the case λ = 1 is done
n [14], while the case λ > 1 is currently open for investigation. Furthermore, in order to connect to experimental work, the
arameters should be tuned according to the details of the real systems, e.g. chemical composition. The mesoscale model
resented here offers an interesting opportunity: Given a sequence of experimental pictures of formed morphologies
or a fixed selection of polymers, we can estimate the size of the parameter λ, and hence, this would identify which
f the mesoscale models is expected to deliver results in the experimental range. A truly multiscale effort including
ethods such as molecular simulations and continuum modeling are needed to bring in further insights especially if
ore complicated scenarios are in view like from [39] to capture gravitation effects or from [40] to capture temperature
ariation effects.
One of the main aspects that we still wish to investigate further in this context is what type of continuum models are

orresponding to the mesoscopic lattice model formulated here. Particularly, we would like to explore under which con-
itions we can bridge suitable averages of our simulation output to what one would obtain by approximating numerically
t the continuum macroscopic scale a Cahn–Hilliard–Cook-type model for a ternary mixture with the evaporation of one
omponent. As first step, we will be investigating which of the geometric structures of the morphologies formed via our
esoscopic simulations can be obtained via changing parameters in the Cahn–Hilliard–Cook model from [41] (or other
ariants as reported e.g. in [25,37,42], and, more recently, in [27]), and which are not obtainable via such macroscopic-level
imulations.
Once morphologies obtainable via both the λ-model as well as by the Cahn–Hilliard–Cook-type system for a ternary

ixture with evaporation are classified, then one can think of studying the effect of the obtained morphologies shapes
n the efficiency of the macroscopic flux responsible for charge transport. Alike upscaled information can be reached
ia averaging the transport of charges over an array of microstructures (REV) which all have as inclusions the obtained
orphologies. This discussion can potentially be done at the level of the Nernst–Planck–Poisson system as in [43] and
ventually it can be combined in a shape optimization framework. A similar work program has been proposed in [44], but
hey did not consider physically realistic selections of morphologies leaving thus place for a number of improvements.
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