6 research outputs found

    Vitamin D Promotes Skeletal Muscle Regeneration and Mitochondrial Health

    Get PDF
    Vitamin D is an essential nutrient for the maintenance of skeletal muscle and bone health. The vitamin D receptor (VDR) is present in muscle, as is CYP27B1, the enzyme that hydroxylates 25(OH)D to its active form, 1,25(OH)D. Furthermore, mounting evidence suggests that vitamin D may play an important role during muscle damage and regeneration. Muscle damage is characterized by compromised muscle fiber architecture, disruption of contractile protein integrity, and mitochondrial dysfunction. Muscle regeneration is a complex process that involves restoration of mitochondrial function and activation of satellite cells (SC), the resident skeletal muscle stem cells. VDR expression is strongly upregulated following injury, particularly in central nuclei and SCs in animal models of muscle injury. Mechanistic studies provide some insight into the possible role of vitamin D activity in injured muscle. In vitro and in vivo rodent studies show that vitamin D mitigates reactive oxygen species (ROS) production, augments antioxidant capacity, and prevents oxidative stress, a common antagonist in muscle damage. Additionally, VDR knockdown results in decreased mitochondrial oxidative capacity and ATP production, suggesting that vitamin D is crucial for mitochondrial oxidative phosphorylation capacity; an important driver of muscle regeneration. Vitamin D regulation of mitochondrial health may also have implications for SC activity and self-renewal capacity, which could further affect muscle regeneration. However, the optimal timing, form and dose of vitamin D, as well as the mechanism by which vitamin D contributes to maintenance and restoration of muscle strength following injury, have not been determined. More research is needed to determine mechanistic action of 1,25(OH)D on mitochondria and SCs, as well as how this action manifests following muscle injury in vivo. Moreover, standardization in vitamin D sufficiency cut-points, time-course study of the efficacy of vitamin D administration, and comparison of multiple analogs of vitamin D are necessary to elucidate the potential of vitamin D as a significant contributor to muscle regeneration following injury. Here we will review the contribution of vitamin D to skeletal muscle regeneration following injury

    Extreme drought impacts have been underestimated in grasslands and shrublands globally.

    Get PDF
    Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought

    The SUMup collaborative database: Surface mass balance, subsurface temperature and density measurements from the Greenland and Antarctic ice sheets (1912 - 2023)

    No full text
    The SUMup database is a compilation of surface mass balance (SMB), subsurface temperature and density measurements from the Greenland and Antarctic ice sheets. This 2023 release contains 4 490 442 data points: 1 778 540 SMB measurements, 2 706 413 density measurements and 5 489 subsurface temperature measurements. This is respectively 1 477 132, 420 825 and 4 715 additional observations of SMB, density and temperature compared to the 2022 release. This new release provides not only snow accumulation on ice sheets, like its predecessors, but all types of SMB measurements, including from ablation areas. On the other hand, snow depth on sea ice is discontinued, but can still be found in the previous releases. The data files are provided in both CSV and NetCDF format and contain, for each measurement, the following metadata: latitude, longitude, elevation, timestamp, method, reference of the data source and, when applicable, the name of the measurement group it belongs to (core name for SMB, profile name for density, station name for temperature). Data users are encouraged to cite all the original data sources that are being used. Issues about this release as well as suggestions of datasets to be added in next releases can be done on a dedicated user forum: https://github.com/SUMup-database/SUMup-data-suggestion/issues. Example scripts to use the SUMup 2023 files are made available on our script repository: https://github.com/SUMup-database/SUMup-example-scripts

    Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

    No full text
    Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.This research was supported by the European Research Council (ERC grant 647038 (BIODESERT) awarded to F.T.M.) and Generalitat Valenciana (CIDEGENT/2018/041). D.J.E. was supported by the Hermon Slade Foundation (HSF21040). J. Ding was supported by the National Natural Science Foundation of China Project (41991232) and the Fundamental Research Funds for the Central Universities of China. M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea Next Generation EU/PRTR and the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. O.S. was supported by US National Science Foundation (Grants DEB 1754106, 20-25166), and Y.L.B.-P. by a Marie Sklodowska-Curie Actions Individual Fellowship (MSCA-1018 IF) within the European Program Horizon 2020 (DRYFUN Project 656035). K.G. and N.B. acknowledge support from the German Federal Ministry of Education and Research (BMBF) SPACES projects OPTIMASS (FKZ: 01LL1302A) and ORYCS (FKZ: FKZ01LL1804A). B.B. was supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology, and M. Bowker by funding from the School of Forestry, Northern Arizona University. C.B. acknowledges funding from the National Natural Science Foundation of China (41971131). D.B. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096), and A. Fajardo support from ANID PIA/BASAL FB 210006 and the Millennium Science Initiative Program NCN2021-050. M.F. and H.E. received funding from Ferdowsi University of Mashhad (grant 39843). A.N. and M.K. acknowledge support from FCT (CEECIND/02453/2018/CP1534/CT0001, SFRH/BD/130274/2017, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), EEA (10/CALL#5), AdaptForGrazing (PRR-C05-i03-I-000035) and LTsER Montado platform (LTER_EU_PT_001) grants. O.V. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096). L.W. was supported by the US National Science Foundation (EAR 1554894). Y.Z. and X.Z. were supported by the National Natural Science Foundation of China (U2003214). H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan

    Extreme drought impacts have been underestimated in grasslands and shrublands globally

    No full text
    Altres Ajuts: Fundación Ramón Areces grant CIVP20A6621Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought

    Extreme drought impacts have been underestimated in grasslands and shrublands globally

    No full text
    Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought
    corecore