251 research outputs found

    Can a Week Make a Difference? Changing Perceptions about Teaching and Living in Rural Alaska

    Get PDF
    Many Alaskan schools are located in extremely remote or \u27fly-in\u27 places. These geographical extremes affect the recruitment and retention of teachers to remote rural schools. Through a partnership between the Southwest Region School District of Alaska and the Department of Education at Alaska Pacific University (APU), 14 pre-service teachers participated in a one-week remote rural practice teaching experience. These APU students lived and taught in village schools where indigenous Alaska Natives were the majority and whose language is Yup’ik. Through the use of pre and post experience questionnaires, the pre-service teachers’ views about rural teaching and seeking rural appointments were sought

    Electric field sensing with a scanning fiber-coupled quantum dot

    Get PDF
    We demonstrate the application of a fiber-coupled quantum-dot-in-a-tip as a probe for scanning electric field microscopy. We map the out-of-plane component of the electric field induced by a pair of electrodes by measurement of the quantum-confined Stark effect induced on a quantum dot spectral line. Our results are in agreement with finite element simulations of the experiment. Furthermore, we present results from analytic calculations and simulations which are relevant to any electric field sensor embedded in a dielectric tip. In particular, we highlight the impact of the tip geometry on both the resolution and sensitivity.Comment: 10 pages, 4 figure

    An examination of man-made radio noise at 37HF receiving sites

    Get PDF
    Man-made radio noise was examined at 37 HF receiving sites spaced at wide intervals around the world. The measurements were made with the goal of understanding the temporal and spectral structure of each example of man-made noise, determining the sources involved, and developing procedures to minimize the impact of man-made noise on signal reception. All measurements were made at the input terminals of receivers at each site as contrasted to the more traditional field-strength measurement of radio noise collected by a monopole antennaPrepared for: the Naval Security Grouphttp://archive.org/details/examinationofman00vincNAApproved for public release; distribution is unlimited

    Quantum dot opto-mechanics in a fully self-assembled nanowire

    Get PDF
    We show that fully self-assembled optically-active quantum dots (QDs) embedded in MBE-grown GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion. Oscillations of the NW modulate the QD emission energy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning of two neighboring QDs into resonance, possibly allowing for emitter-emitter coupling. Both the QDs and the coupling mechanism -- material strain -- are intrinsic to the NW structure and do not depend on any functionalization or external field. Such systems open up the prospect of using QDs to probe and control the mechanical state of a NW, or conversely of making a quantum non-demolition readout of a QD state through a position measurement.Comment: 20 pages, 6 figure

    An initial examination of the occupancy and use of the wireless-radio bands

    Get PDF
    Data on the occupancy and use of the license-exempt wireless-radio bands collected over a 10 year period is summarized. Numerous examples of measured results are presented in a time-history format. The time- and frequency-varying properties of radio noise and radio interference are visually portrayed where the noise and interference is usually highly impulsive and highly changeable. Of primary concern is that the interference could not be effectively described in standard statistical terms such as peak power, average power, root-mean-square power, amplitude probability plots, or other such conventional measures. The noise and interference was nonstationary in nature with time and frequency variations comparable to message lengths.Approved for public release; distribution is unlimited

    Modulation of Calcium-Dependent Inactivation of L-Type Ca2+ Channels via β-Adrenergic Signaling in Thalamocortical Relay Neurons

    Get PDF
    Neuronal high-voltage-activated (HVA) Ca2+ channels are rapidly inactivated by a mechanism that is termed Ca2+-dependent inactivation (CDI). In this study we have shown that β-adrenergic receptor (βAR) stimulation inhibits CDI in rat thalamocortical (TC) relay neurons. This effect can be blocked by inhibition of cAMP-dependent protein kinase (PKA) with a cell-permeable inhibitor (myristoylated protein kinase inhibitor-(14–22)-amide) or A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide, suggesting a critical role of these molecules downstream of the receptor. Moreover, inhibition of protein phosphatases (PP) with okadaic acid revealed the involvement of phosphorylation events in modulation of CDI after βAR stimulation. Double fluorescence immunocytochemistry and pull down experiments further support the idea that modulation of CDI in TC neurons via βAR stimulation requires a protein complex consisting of CaV1.2, PKA and proteins from the AKAP family. All together our data suggest that AKAPs mediate targeting of PKA to L-type Ca2+ channels allowing their phosphorylation and thereby modulation of CDI

    Dam removal enables diverse juvenile life histories to emerge in threatened salmonids repopulating a heterogeneous landscape

    Get PDF
    Human stressors block, eliminate, and simplify habitat mosaics, eroding landscapes’ life history diversity and thus biological resilience. One goal of restoration is to alleviate human stressors that suppress life history diversity, but life history responses to these efforts are still coming into focus. Here, we report life history diversity emerging in threatened salmonids (Oncorhynchus spp.) repopulating the recently undammed Elwha River (WA, United States) in adjacent but environmentally distinct tributaries. The ~20 km tributaries entered the Elwha River <1 km apart, but one had a colder stream temperature regime and swifter waters due to its high, snow-dominated elevation and steep valley gradient (~3%), while the other had a warmer stream temperature regime and slower waters because it drained a lake, was at lower elevation, and had a lower stream gradient (~1.5%). Following the 2012 removal of Elwha Dam, the tributaries’ salmonids generally became more abundant and expressed diverse life histories within and among species. The warmer, low-gradient tributary produced more age-1+ coho salmon while the colder, steeper tributary produced a notably high abundance of steelhead smolts in 2020. Additionally, salmonids exiting the warmer tributary were older and possibly larger for their age class, emigrated ~25 days earlier, and included age-0 Chinook salmon that were larger. Also, assemblage composition varied among years, with the most abundant species shifting between Chinook salmon and coho salmon, while steelhead abundances generally increased but were patchy. These patterns are consistent with a newly accessible, heterogeneous landscape generating life history diversity against the backdrop of patchy recruitment as salmonids—some with considerable hatchery-origin ancestry—repopulate an extirpated landscape. Overall, dam removal appears to have promoted life history diversity, which may bolster resilience during an era of rapid environmental change and portend positive outcomes for upcoming dam removals with similar goals

    Potential for ecological nonlinearities and thresholds to inform Pacific salmon management

    Get PDF
    AbstractEcology is often governed by nonlinear dynamics. Nonlinear ecological relationships can include thresholds—incremental changes in drivers that provoke disproportionately large ecological responses. Among the species that experience nonlinear and threshold dynamics are Pacific salmon (Oncorhynchus spp.). These culturally, ecologically, and economically significant fishes are in many places declining and management focal points. Often, managers can influence or react to ecological conditions that salmon experience, suggesting that nonlinearities, especially thresholds, may provide opportunities to inform decisions. However, nonlinear dynamics are not always invoked in management decisions involving salmon. Here, we review reported nonlinearities and thresholds in salmon ecology, describe potential applications that scientists and managers could develop to leverage nonlinear dynamics, and offer a path toward decisions that account for ecological nonlinearities and thresholds to improve salmon outcomes. It appears that nonlinear dynamics are not uncommon in salmon ecology and that many management arenas may potentially leverage them to enable more effective or efficient decisions. Indeed, decisions guided by nonlinearities and thresholds may be particularly desirable considering salmon management arenas are often characterized by limited resources and mounting ecological stressors, practical constraints, and conservation challenges. More broadly, many salmon systems are data‐rich and there are an extensive range of ecological contexts in which salmon are sensitive to anthropogenic decisions. Approaches developed to leverage nonlinearities in salmon ecology may serve as examples that may inform analogous approaches in other systems and taxa
    corecore