1,417 research outputs found

    Bitwise Bell inequality violations for an entangled state involving 2N ions

    Get PDF
    Following on from previous work [J. A. Larsson, Phys. Rev. A 67, 022108 (2003)], Bell inequalities based on correlations between binary digits are considered for a particular entangled state involving 2N trapped ions. These inequalities involve applying displacement operations to half of the ions and then measuring correlations between pairs of corresponding bits in the binary representations of the number of centre-of-mass phonons of N particular ions. It is shown that the state violates the inequalities and thus displays nonclassical correlations. It is also demonstrated that it violates a Bell inequality when the displacements are replaced by squeezing operations.Comment: 12 pages, 5 figures, accepted for publication in Phys. Rev.

    Estimating connectivity of hard clam (Mercenaria mercenaria) and eastern oyster (Crassostrea virginica) larvae in Barnegat Bay

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goodwin, J. D., Munroe, D. M., Defne, Z., Ganju, N. K., & Vasslides, J. Estimating connectivity of hard clam (Mercenaria mercenaria) and eastern oyster (Crassostrea virginica) larvae in Barnegat Bay. Journal of Marine Science and Engineering, 7(6), (2019): 167, doi:10.3390/jmse7060167.Many marine organisms have a well-known adult sessile stage. Unfortunately, our lack of knowledge regarding their larval transient stage hinders our understanding of their basic ecology and connectivity. Larvae can have swimming behavior that influences their transport within the marine environment. Understanding the larval stage provides insight into population connectivity that can help strategically identify areas for restoration. Current techniques for understanding the larval stage include modeling that combines particle attributes (e.g., larval behavior) with physical processes of water movement to contribute to our understanding of connectivity trends. This study builds on those methods by using a previously developed retention clock matrix (RCM) to illustrate time dependent connectivity of two species of shellfish between areas and over a range of larval durations. The RCM was previously used on physical parameters but we expand the concept by applying it to biology. A new metric, difference RCM (DRCM), is introduced to quantify changes in connectivity under different scenarios. Broad spatial trends were similar for all behavior types with a general south to north progression of particles. The DRCMs illustrate differences between neutral particles and those with behavior in northern regions where stratification was higher, indicating that larval behavior influenced transport. Based on these findings, particle behavior led to small differences (north to south movement) in transport patterns in areas with higher salinity gradients (the northern part of the system) compared to neutral particles. Overall, the dominant direction for particle movement was from south to north, which at times was enhanced by winds from the south. Clam and oyster restoration in the southern portion of Barnegat Bay could serve as a larval supply for populations in the north. These model results show that coupled hydrodynamic and particle tracking models have implications for fisheries management and restoration activities.This work is supported by the Barnegat Bay Partnership EPA grants CE98212311, CE98212312. We extend our deep thanks to anonymous reviewers and Lisa Lucas who provided thoughtful input that improved the manuscript. We thank Matthew Kozak and Ian Mitchell for technical advice and Elizabeth North for LTRANS guidance. Joe Caracapa and Jennifer Gius provided help running remote simulations. COAST model source code is available at https://code.usgs.gov/coawstmodel/COAWST [50]. The hydrodynamic model outoput is available at: http://geoport.whoi.edu/thredds/catalog/clay/usgs/users/zdefne/GRL/catalog.html [21] and particle tracking model outputs are available from the corresponding author upon request

    Rate-dependent phase transformations in nanoindented germanium

    No full text
    There is considerable controversy over the deformation behavior of germanium(Ge) under nanoindentation using a sharp diamond tip, with a diverse range of observations that suggest competing mechanisms. Here we show the deformation mechanism of Ge can be controlled by the rate of applied load. Loading rate is varied over three orders of magnitude using depth-sensing nanoindentation. At slow loading rates, shear-induced plasticity is observed. At rapid loading rates (>100 mN s¯¹), pressure-induced phase transformations are detected by ex situ micro-Raman spectroscopy and transmission electron microscopy. This switch in the deformation mechanism is due to the differing rate sensitivities of the respective deformation modes, shear-induced plasticity or pressure-induced phase transformation

    Operational Theory of Homodyne Detection

    Full text link
    We discuss a balanced homodyne detection scheme with imperfect detectors in the framework of the operational approach to quantum measurement. We show that a realistic homodyne measurement is described by a family of operational observables that depends on the experimental setup, rather than a single field quadrature operator. We find an explicit form of this family, which fully characterizes the experimental device and is independent of a specific state of the measured system. We also derive operational homodyne observables for the setup with a random phase, which has been recently applied in an ultrafast measurement of the photon statistics of a pulsed diode laser. The operational formulation directly gives the relation between the detected noise and the intrinsic quantum fluctuations of the measured field. We demonstrate this on two examples: the operational uncertainty relation for the field quadratures, and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe

    Reply on the ``Comment on `Loss-error compensation in quantum- state measurements' ''

    Get PDF
    The authors of the Comment [G. M. D'Ariano and C. Macchiavello to be published in Phys. Rev. A, quant-ph/9701009] tried to reestablish a 0.5 efficiency bound for loss compensation in optical homodyne tomography. In our reply we demonstrate that neither does such a rigorous bound exist nor is the bound required for ruling out the state reconstruction of an individual system [G. M. D'Ariano and H. P. Yuen, Phys. Rev. Lett. 76, 2832 (1996)].Comment: LaTex, 2 pages, 1 Figure; to be published in Physical Review

    Characterisations of Classical and Non-classical states of Quantised Radiation

    Full text link
    A new operator based condition for distinguishing classical from non-classical states of quantised radiation is developed. It exploits the fact that the normal ordering rule of correspondence to go from classical to quantum dynamical variables does not in general maintain positivity. It is shown that the approach naturally leads to distinguishing several layers of increasing nonclassicality, with more layers as the number of modes increases. A generalisation of the notion of subpoissonian statistics for two-mode radiation fields is achieved by analysing completely all correlations and fluctuations in quadratic combinations of mode annihilation and creation operators conserving the total photon number. This generalisation is nontrivial and intrinsically two-mode as it goes beyond all possible single mode projections of the two-mode field. The nonclassicality of pair coherent states, squeezed vacuum and squeezed thermal states is analysed and contrasted with one another, comparing the generalised subpoissonian statistics with extant signatures of nonclassical behaviour.Comment: 16 pages, Revtex, One postscript Figure compressed and uuencoded Replaced, minor changes in eq 4.30 and 4.32. no effect on the result

    Magnetic field processing to enhance critical current densities of MgB2 superconductors

    Get PDF
    Magnetic field of up to 12 T was applied during the sintering process of pure MgB2 and carbon nanotube (CNT) doped MgB2 wires. We have demonstrated that magnetic field processing results in grain refinement, homogeneity and significant enhancement in Jc(H) and Hirr. The Jc of pure MgB2 wire increased by up to a factor of 3 to 4 and CNT doped MgB2 by up to an order of magnitude in high field region respectively, compared to that of the non-field processed samples. Hirr for CNT doped sample reached 7.7 T at 20 K. Magnetic field processing reduces the resistivity in CNT doped MgB2, straightens the entangled CNT and improves the adherence between CNTs and MgB2 matrix. No crystalline alignment of MgB2 was observed. This method can be easily scalable for a continuous production and represents a new milestone in the development of MgB2 superconductors and related systems

    Universal homodyne tomography with a single local oscillator

    Full text link
    We propose a general method for measuring an arbitrary observable of a multimode electromagnetic field using homodyne detection with a single local oscillator. In this method the local oscillator scans over all possible linear combinations of the modes. The case of two modes is analyzed in detail and the feasibility of the measurement is studied on the basis of Monte-Carlo simulations. We also provide an application of this method in tomographic testing of the GHZ state.Comment: 12 pages, 5 figures (8 eps files

    Perfectionism, achievement motives, and attribution of success and failure in female soccer players

    Get PDF
    While some researchers have identified adaptive perfectionism as a key characteristic to achieving elite performance in sport, others see perfectionism as a maladaptive characteristic that undermines, rather than helps, athletic performance. Arguing that perfectionism in sport contains both adaptive and maladaptive facets, the present article presents a study of N 5 74 female soccer players investigating how two facets of perfectionism—perfectionistic strivings and negative reactions to imperfection (Stoeber, Otto, Pescheck, Becker, & Stoll, 2007)—are related to achievement motives and attributions of success and failure. Results show that striving for perfection was related to hope of success and self-serving attributions (internal attribution of success). Moreover, once overlap between the two facets of perfectionism was controlled for, striving for perfection was inversely related to fear of failure and self-depreciating attributions (internal attribution of failure). In contrast, negative reactions to imperfection were positively related to fear of failure and self-depreciating attributions (external attribution of success) and inversely related to self-serving attributions (internal attribution of success and external attribution of failure). It is concluded that striving for perfection in sport is associated with an adaptive pattern of positive motivational orientations and self-serving attributions of success and failure, which may help athletic performance. In contrast, negative reactions to imperfection are associated with a maladaptive pattern of negative motivational orientations and self-depreciating attributions, which is likely to undermine athletic performance. Consequently, perfectionism in sport may be adaptive in those athletes who strive for perfection, but can control their negative reactions when performance is less than perfect
    corecore