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Abstract We present a detailed investigation of the
chemistry at the growth interface between the bottom

electrode and ferroelectric film in (001)-oriented epitaxial

ferroelectric thin-film heterostructures. Three different
ferroelectric systems, namely PbZr0.2Ti0.8O3, PbZr0.52
Ti0.48O3, and BaTiO3 deposited on SrRuO3/SrTiO3, were

investigated to compare and contrast the role of lattice
mismatch versus the volatility of the deposited cation

species. A combination of transmission electron micros-

copy-based imaging and spectroscopy reveals distinct
correlations among the ferroelectric thin-film composition,

the deposition process, and chemical gradients observed

across the ferroelectric–electrode interface. Sr diffusion

from the electrode into the ferroelectric film was found to
be dominant in PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 thin films.

Conversely, Pb diffusion was found to be prevalent in

PbZr0.52Ti0.48O3/SrRuO3/SrTiO3 thin films. The BaTiO3/
SrRuO3/SrTiO3 heterostructure was found to have atomi-

cally sharp interfaces with no signature of any interdiffu-

sion. We show that controlling the volatility of the cation
species is as crucial as lattice mismatch in the fabrication

of defect-free ferroelectric thin-film devices.

Introduction

Thin-film ferroelectrics are now routinely used in electronic

devices such as ferroelectric random access memories, RF
devices, sensors, actuators, and micro-electro-mechanical

systems [1]. The majority of these devices are fabricated

such that the ferroelectric is deposited on a bottom electrode
to provide an electrical contact for input and output data.

Naturally, the performance of the device is heavily depen-
dent on the quality of the interface between the ferroelectric

and electrode/substrate heterostructure [2] where it has been

shown that defects such as oxygen vacancies and cation
dopants play a vital role in device reliability and endurance

[3]. More recently, one singular aspect that has attracted

much attention is the strong role of dislocations in the
performance degradation of the ferroelectric layer [4, 5]. It

has been shown theoretically that the presence of disloca-

tions leads to polarization gradients across the ferroelectric–
electrode interface and such gradients give rise to local

depolarization fields that pin domain switching [5]. Typi-

cally, dislocations at the ferroelectric–electrode interface
originate due to the interface (mis)-match, where the

interfacial lattice misfit strain between the electrode and the
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film is relaxed by the formation of edge-type misfit dislo-

cations [6]. Another factor is the presence of growth defects
such as threading dislocations that originate primarily from

the substrate and composition gradients that occur as a

consequence of the fabrication process and its related
ambient conditions [7]. An interesting aspect of the ferro-

electric–electrode interface is that by controlling the defect

density, it is indeed possible to control ferroelastic (typi-
cally 90") polydomain formation. This has been shown both

theoretically [8–10] and experimentally [11] with recent
results confirming that dislocations present at the ferro-

electric–electrode interface can act as nucleation centers for

polydomain phases [11, 12]. All of the above eventually
lead to the suppression of the switchable polarization, with

the case being markedly worse for ultra-thin ferroelectric

thin films [5, 13] and low-dimensional ferroelectric nano-
structures [4, 14]. On the other hand, it has been shown that

completely defect-free model heterostructures possess

excellent ferroelectric and piezoelectric properties [15].
As expected, the existing literature reflects that the

quality and stability of the interface has a strong depen-

dence on the thin-film growth process. Two widely used
techniques to grow ferroelectric thin films are pulsed laser

deposition (PLD) [15] and high pressure on-axis sputtering

(HPOAS) [16]. Interestingly, although both techniques
yield ‘‘epitaxial’’ samples, they differ significantly in the

growth kinetics of the deposited chemical species and

mean-free path of the active ions. While these techniques
use deposition temperatures (*600 "C) lower than the

melting temperatures of the individual constituents

(*760 "C), controlling elements such as Pb can be diffi-
cult due to their high vapor pressures (i.e., high volatility).

This drastically increases the probability of having com-

positional gradients across a given heterostructure. There-
fore, optimal deposition rate and growth conditions are

critical parameters to avoid these gradients.

The objective of this study is to present a systematic
study of structural defects and local chemistry at the

growth interface between the bottom electrode and ferro-

electric film (hereafter referred to simply as the interface)
as a function of the ferroelectric composition as well as the

growth technique. Using a combination of transmission

electron microscopy (TEM)-based conventional imaging

and spectroscopy techniques we reveal the subtle, yet
critical, differences in the chemical stability of the inter-

face. PbZrxTi1-xO3/SrRuO3 (SRO)/SrTiO3 (STO) epitaxial

heterostructures with different thicknesses, deposited by
PLD and HPOAS, are analyzed as our model systems. To

contrast and compare the effect of Pb volatility, investi-

gations on a Pb-free heterostructure BaTiO3/SrRuO3/
SrTiO3 deposited through HPOAS are also presented. This

allows us to obtain a complete picture of the roles of
parameters such as cation volatility or lattice mismatch, as

a function of growth kinetics.

Experiment

To avoid complications due to grain boundaries and sec-

ondary phases we chose to focus on (001)-oriented epi-

taxial heterostructures. These were achieved by depositing
the ferroelectric layers on perovskite oxide electrode

SrRuO3 (SRO)-buffered (100) SrTiO3 (STO) substrates.

The HPOAS SRO layers were grown at a substrate tem-
perature and oxygen pressure of 580 "C and 3 mbar [17],

respectively. For the PLD samples, the SRO layers were

grown at a substrate temperature of 700 "C and an oxygen
pressure of 0.14 mbar [15, 16]. Table 1 shows the growth

conditions for each film, the lattice parameter at the growth

temperature (TG), and the estimated misfit with the SRO
layer at TG. The SRO layer is assumed to be pseudomor-

phic with the underlying STO substrate with an imposed

lattice parameter at TG of 0.393 nm [5]. The laser repetition
rate used during PLD growth for both SRO and PZT 20/80

layers was 3–5 Hz [15]. The growth rate for the PZT layer

varied for each technique, being 12 nm/h [17] and
*200 nm/h [15] for HPOAS and PLD, respectively.

Considering the critical thickness for the appearance of 90"
domains [18] and dislocations (i.e., the so-called Mat-
thews–Blakeslee critical thickness [6]), various thicknesses

of the ferroelectric layers were studied to investigate the

effect of each of these defects.
The local chemistry at the interface and structural

defects was investigated using conventional TEM imaging

Table 1 Growth conditions, lattice parameters, and mismatches for ferroelectric layers

Ferroelectric film Growth technique Thickness (nm) Lattice parameter (nm) at TG Misfit with SRO (%)

T ("C) O2 pressure (mbar)

PZT 20/80 HPOAS [25] 580 3 65 0.396 1 [5]

PZT 20/80 PLD [15] 575 0.3 55

PZT 20/80 PLD [32] 600 0.4 200 0.396 1 [5]

PZT 52/48 PLD 575 0.3 200 0.4084 3.93 [5]

BTO HPOAS [37] 700 2.6 40 0.4006 2.6 [37]
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combined with energy filtered TEM (EFTEM) analysis and

energy dispersive X-ray spectroscopy (EDS). Cross-sec-
tional TEM samples were prepared by standard mechanical

polishing and ion beam thinning procedures [19]. EFTEM

analysis and conventional TEM imaging were performed
using a JEOL 3000F operated at 300 kV, and EDS was

performed using a Philips CM200 FEG TEM operated at

200 kV. Although local chemistry has been previously
investigated the employing techniques such as secondary

ion mass spectroscopy (SIMS) [20, 21], Auger electron
spectroscopy [22], X-ray photoelectron spectroscopy [22],

and X-ray diffraction [23], visual evidence of the subtle

chemical changes at the interface and their dependency on
interfacial defects have been difficult to obtain. This is

because in the aforementioned techniques the probe size

ranges from a few tens of nanometer to the order of a few
microns or even larger. On the other hand, the TEM

techniques used here have probe sizes of the order of a few

nanometers and hence have the potential to yield more
detailed and accurate spatial information on the chemical

heterogeneity [21].

In addition to intrinsic instrumental limitations such as
spatial resolution, signal-to-noise ratio, energy resolution,

and so on [19, 24], it is critical to highlight the possible

overlap of individual elemental signals in these complex-
oxide heterostructures. This is a crucial factor that needs to

be considered before performing any chemical mapping

experiment. As an example, we consider the heterostruc-
tures used in this study. A significant overlap of the M

edges occurs for Zr, Sr, and Ru in their energy loss signals

used to obtain EFTEM elementals maps. This overlap is
due to the signals that each element displays in the range

from 200 to 500 eV extending over several hundreds of eV.

The Zr-M edge commences around 200 eV and overlaps
with substantial parts of both the Ru and Sr-M edges,

which makes it impossible to separate the Zr signal from

that of Ru and Sr. Further, for EDS analysis, the Zr-Ka
peak overlaps with the edge of the Sr-Kb peak, thus pre-

senting a challenge to discern the start of one layer and the

end of the other. This leads to an unreliable mapping for Zr
using both techniques. Additionally the Ba-La peak over-

laps with the Ti-Ka peak virtually excluding EDS analysis

in this situation. Hence, to accurately map each of the
constituent elements, the two techniques were exploited in

a synergetic fashion. Table 2 shows the reference energies

that were used for each mapping technique.
EFTEM analysis was performed using the conventional

three-window method, which allows the selection of dif-

ferent predefined energy losses near a specific edge to
generate elemental maps [24]. Both element maps and

jump-ratio images were calculated. Jump-ratio images have

the advantage that they display a higher signal-to-noise ratio
and reduced elastic scattering contrast compared to the

elemental maps. Thus, comparison of elemental maps with

jump-ratio images makes it possible to discern chemical
changes from elastic contrast effects [24]. Five sets of ele-

mental maps were acquired for each sample using the three-

window method and these elemental maps were compared
to their respective elemental jump-ratio image. In all cases,

we will present jump-ratio images so that the potential

impact of elastic (diffraction) contrast is minimized,
revealing the true element profiles at the interfaces.

Heavy elements, such as Pb, can be identified through

EDS [19] along with some other light elements, allowing
us to corroborate the results obtained by EFTEM. The EDS

data sets were acquired as continuous data points using 256
points per line, a dwell time of 2000 ms and an acquisition

time of*8 min per line. Eight line scans were acquired for

each element on different regions across the interface.
Images were acquired before and after each line scan and

no significant drift could be seen. The background was then

removed to reduce noise levels and provide a more accu-
rate qualitative reading. To improve the reliability of the

EDS line scans, each scan was repeated eight times, and the

presented data are a typical representative of the acquired
line scans.

Results and discussion

PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 (PZT 20/80) system

Bright field TEM (BF TEM) was employed to investigate

the interfacial quality and any structural features present.
Figure 1 shows a set of BF TEM images for two PZT 20/80

samples with similar thickness of the ferroelectric layer

albeit grown using different techniques. Figure 1a shows a
65-nm thick PZT film grown by HPOAS, whereas Fig. 1b

shows a 55-nm thick layer grown by PLD. The 65-nm

HPOAS sample displays 90" domains, threading disloca-
tions, and a very rough SRO–PZT interface. In contrast the

55-nm PLD sample shows no domains, sharper interfaces,

and a very low density of threading dislocations. This

Table 2 EELS and X-ray energies used for EFTEM and EDS [38]

Element Z EELS (eV) X-ray (keV)

C 6 284 (K) 0.282 (Ka)

O 8 532 (K) 0.523 (Ka)

Ti 22 456 (L2,3) 4.510 (Ka)

Sr 38 133 (M4,5) 14.16 (Ka)

Zr 40 180 (M4,5) 15.77 (Ka)

Ru 44 279 (M4,5) 19.27 (Ka)

Ba 56 781 (M4,5) 4.466 (La)

Pb 82 86 (M4,5) 2.346 (Ma)
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clearly denotes how significantly the growth conditions
alone can influence the sharpness and structural defects in

the heterostructures. In order to investigate the chemistry at

the interface, EFTEM analysis was performed on both
samples. Figure 2 shows the EFTEM data for both PZT 20/

80 samples (a, c, e, and g represent data for the sputtered

sample, whereas b, d, f, and h are for the PLD sample).
Figure 2a, b displays the elastic images, whereas the ele-

mental jump-ratio images are shown in Fig. 2c–h. The Sr

jump-ratio maps indicate distinct Sr diffusion of *5 nm
into the PZT from the SRO for both samples (Fig. 2c, d).

This is a rather unexpected result as it is conventionally

thought that Ru, rather than Sr, is more susceptible to
transport across the interfaces, as RuO2 is highly volatile

[25, 26]. However, earlier Cross et al. [27, 28] have pub-
lished SIMS and EDS data for La-doped PZT (PLZT) on

SRO that also finds Sr diffusion from SRO into the PLZT

layer. They proposed that Sr diffusion is related to the
excess of Pb, with such a diffusion being responsible for

the high leakage current in their capacitors. It is well

known that Sr doping of PZT leads to a marked decrease in
the magnitude of the polarization and could also degrade

the physical properties such as the dielectric constant and

Curie temperature [29, 30]. This finding is critical as it
provides a secondary explanation to the observed decrease

in the switching polarization with decreasing thickness for

Pb-based ferroelectric films [31]. Until now this has been
attributed in an overwhelming majority of studies to the

depolarization field at the ferroelectric–electrode interface,

i.e., it is a physical effect rather than chemical roughness.
The data presented in Fig. 2 demonstrate the critical need

for careful examination of the chemistry of the interface

and the possibility of strong ‘‘extrinsic’’ contributions to
the observed degradation. Indeed such extrinsic factors

have been thoroughly investigated for ferroelectric sys-

tems, which have a large lattice-mismatch with the
underlying electrode [4, 5, 32]. The fact that Sr diffusion

may occur even in what is perceived to be a perfect
interface (e.g., Fig. 2b) is rather surprising.

EDS was performed to investigate Pb inter-diffusion and

corroborate the results obtained by EFTEM. Figure 3 dis-
plays the EDS elemental line scans acquired across the

interfaces for both samples, the dotted lines indicate the

interfaces for each layer. Again the left column represents
data for the sputtered sample and the right column is for the

PLD sample. The EDS line scans for Sr confirm the results

previously seen in the EFTEM maps of Fig. 2. They show
diffusion of Sr to a distance of approximately 10 nm from

the SRO into the PZT layer. Surprisingly, despite the

radical (visual) difference in interface roughness between
the two samples, Sr diffusion seems to be independent of

interfacial sharpness or defect concentration. On the other
hand, for Ti and Ru (the perovskite B-site elements) no

diffusion could be measured by either technique. Neither

the EFTEM results (Fig. 2e–h) nor the EDS line (Fig. 3a,
b) scans for Ti or Ru indicates any movement or diffusion

of the B-site species from the ferroelectric into the elec-

trode or in the opposite direction.
To better understand the role of interfacial features in

the ultimate local chemistry, we also investigated a 200-nm

thick PZT 20/80 layer that was grown using PLD albeit
with an oxygen-deficient target [32]. This thickness is well

beyond the M-B critical thickness and was chosen so as to

ensure the presence of 90" domains [18]. Figure 4a is the
bright field image for this sample, which shows sharp

interfaces and the expected 90" domains. Following the

same methodology as above, EDS (Fig. 4b) and EFTEM
(Fig. 5) analyses were performed. The EDS line scans in

Fig. 4b again indicate Sr diffusion (*5 nm), while

chemically sharp interfaces are observed for Ru, Ti and Pb.
EFTEM maps confirm Sr diffusion into the PZT (Fig. 5b)

and again, chemically sharp interfaces for B-site Ti and Ru

(Fig. 5c, d). More interestingly, a closer inspection of the
Sr jump-ratio image in Fig. 5b not only reveals Sr

Fig. 1 Bright field images for
PZT 20/80 samples: a 65 nm
HPOAS, b 55 nm PLD
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Fig. 2 EFTEM data set for PZT
20/80 samples: a Elastic image
for 65 nm PZT 20/80 HPOAS,
b Elastic image for 55 nm PZT
20/80 PLD, c Sr jump-ratio
image for HPOAS sample,
d Sr jump-ratio image for PLD
sample, e Ru jump-ratio image
for HPOAS sample, f Ru jump-
ratio image for PLD sample,
g Ti jump-ratio image for
HPOAS sample, and h Ti jump-
ratio image for PLD sample
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diffusion, but also Sr deficiency in a region directly below
the 90" domain nucleation zone, an observation hitherto

unreported for PZT thin films. This deficiency is indicated

by a darker contrast inside the SRO layer and highlighted
by the black arrow, whereas the dotted line indicates the

SRO–STO interface. Notably, although the 65-nm thick

HPOAS PZT 20/80 sample showed 90" domains (Fig. 1a),
it did not exhibit Sr-deficient pockets below the 90" domain

nucleation zone. This latter result is unique to the thicker

PZT 20/80 sample grown using the oxygen-deficient target
and underlies the subtle effects of the thin-film processing

conditions on the local chemistry at the ferroelectric–

electrode interface. These Sr-deficient pockets are currently
being examined through aberration-corrected high-resolu-

tion TEM and further investigations on the plausible

mechanisms behind their origins will be reported in the
near future.

It is worthwhile to note that Sr diffusion from the SRO

layer into the PZT 20/80 layer is observed irrespective of
the growth technique or growth rates. The next step was to

quantify the extent of diffusion at the PZT/SRO interface in
order to identify the driving force behind the diffusion. In

epitaxial thin films, the diffusion process should be con-

sidered in terms of the main parameters that describe the
mass transport phenomena, namely the diffusivity of the

species and the driving force (gradient of total free energy)

[29]. To identify the underpinning driving force for the
cation diffusion, we examine the diffusion scenario for

both Pb and Sr. As a simple approximation using parabolic

kinetics typical of diffusion, the diffusion depth (X) was
theoretically calculated using the formula, X = HDt, with
the diffusivity (D) calculated by the Arrhenius relationship,

D = Do exp (-Q/RT), where Do is the diffusivity coeffi-
cient, Q the activation enthalpy, R the gas constant, and T
the temperature, and t is time. We first consider the self-

diffusion of Pb at 600 "C in a PLD sample, similar to that
shown in Fig. 4a. Considering a total deposition time of

1 h, for Pb and using the Pb self-diffusion coefficient

reported by Freer [33] for PbTiO3, we find a total length
X = 60 nm. This is more than a quarter of the thickness of

Fig. 3 EDS line scans for PZT
20/80 samples: a 65 nm
HPOAS, b 55 nm PLD

Fig. 4 PLD PZT 20/80,
200 nm: a Bright field image,
b EDS line scan
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the film and immediately underlines the need for excess Pb

in the precursor during the growth process. More impor-

tantly under the typical vacuum and temperature conditions
used for the thin-film growth process, Pb volatility is

expected to worsen. The lack of dependency of Sr transport

on the structural roughness of the interface and relatively
tight control of the B-site ions across the interface strongly

suggests that the observed Sr diffusion is driven by Pb

volatility. Considering the lattice structure of PZT versus
SRO, it is likely that Sr (already occupying a 2? oxidation

state A-site) would be the most ideal element to occupy the

vacant Pb sites. This would hence create a diffusion pro-
cess from the electrode into the ferroelectric and thus

reveals the importance of chemical stability of individual

elements of a heterostructure. We are able to examine this
by estimating the vacancy-diffusion kinetics for Sr. The

diffusivity coefficient of Sr has been reported previously

for perovskite structures by several groups [34–36]. We
take the value reported by Sakaguchi et al. [35]

(DSr = 3.0128 9 10-21 m2 s-1) given for Sr diffusion into

the Lead Magnesium Niobate system. Using the above
diffusion coefficient and applying the parabolic law for an

SRO layer grown by PLD at 700 "C gives a diffusion depth

of X = 9.5 nm. This is in close agreement with the

microscopy observations reported in the EFTEM and EDS
results shown here. Although these results are quantitative

approximations, they not only confirm the influence of the

growth process but also the important role played by the
individual chemical species.

PbZr0.52Ti0.48O3/SrRuO3/SrTiO3 (PZT 52/48) system

To compare the effect of lattice mismatch, the interface for

PZT 52/48 films was investigated next. The mismatch
between PZT 52/48 and SRO is *3.93% (i.e., thrice larger

than in the PZT 20/80 case) and thus a high density of

misfit dislocations and other mismatch accommodating
defects are expected.

Although both HPOAS and PLD films were investi-

gated, we present here the case for the PLD sample, as both
datasets were identical. The bright field image (Fig. 6) for

this 200-nm thick PLD PZT 52/48 sample shows that it has

a high density of dislocations, very fine 90" domains and
significant interface roughness, similar to the HPOAS PZT

Fig. 5 EFTEM data set for
PLD PZT 20/80, 200 nm
(grown under non-optimal
conditions [32]): a Elastic
image, b Sr jump-ratio image,
c Ti jump-ratio image, and d Ru
jump-ratio image
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(20/80) sample. EDS analysis (Fig. 7a) now not only shows

chemically sharp interfaces for Ti and Ru (as in the pre-
vious system), but also for Sr. The same Sr sharpness is

confirmed by EFTEM Sr maps (Fig. 7b). On the other

hand, the EDS line scans for Pb clearly show Pb diffusion
into the SRO layer. Thus we have a scenario that is found

to be completely opposite to that obtained in the PZT 20/80

system where evidently Sr was the element migrating into
the PZT and not Pb.

To explain this strong difference, we need to consider
the relevant stages of formation of misfit dislocations

versus 90" domains within the ferroelectric thin film, both

during the deposition process and the subsequent cooling
stage. It is critical to note that growth defects such as misfit

dislocations primarily nucleate at the high growth tem-

peratures (TG * 575–650 "C) while 90" domains are
formed during the process of cooling down. It can beFig. 6 Bright field image for PLD PZT 52/48, 200 nm thick

Fig. 7 PLD PZT 52/48,
200 nm: a EDS line scans,
b elastic image, and c Sr jump-
ratio map
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expected that the dislocations are mobile at such high

temperatures and moreover the temperatures at which
dislocation formation occurs during the growth process

would be typically above the Curie temperature (*400 "C
for the PZT 52/48 case) and when the film is in a para-
electric state (i.e., no driving force to create ferroelastic

domains). Thus for the case of the PZT 52/48 film where

the interface has an extremely large density of misfit dis-
locations (*1012/cm2) [5], the dislocation cores can act as

perfect channels for the Pb to migrate into the neighboring
SRO layer. For the case of the PZT 20/80 system, the

primary stress accommodating mechanism is the formation

of 90" domains as the lattice mismatch is quite low (*1%).
This domain formation process can occur only as the film

cools down to undergo a paraelectric to ferroelectric phase

transition. Thus it is possible that the nucleation of domains
restricts the migration of the Pb into the SRO layer. It is

also likely that the Sr penetration into the PZT 20/80 layers

is a secondary stress accommodating mechanism as Sr
doping into the ferroelectric layer significantly reduces the

tetragonality and hence the paraelectric to ferroelectric

transformation strain.
Preliminary high angle annular dark field (HAADF)/

EDX results (data not shown) on a similar sample confirm

several cases of diffusion of lead and titanium into SRO at
the site of an interfacial dislocation. Furthermore nanoscale

chemical maps of dislocation cores performed with the

HAADF sample confirm that the dislocation cores do have
excess Pb, with the regions in the PZT matrix directly

above the core being Pb-deficient. These results are

unlikely due to beam damage as we have acquired the EDS

maps at an energy level of 80 to 120 kV and confirmed that
the sample is undamaged by acquiring HAADF images

before and after EDS analysis. More detailed HAADF

imaging of dislocation cores in the 52/48 PZT sample
versus the 20/80 case is currently underway and will be

reported at a later stage.

BaTiO3/SrRuO3/SrTiO3 system (BTO/SRO/STO)

Finally, we present analysis of a perfect BTO/SRO/STO

heterostructure to elucidate the effect of non-volatile

cations. The BTO sample was deposited by HPOAS and
has a misfit of 2.6% [37]. The thickness for the BTO

layer is *50 nm and as shown in Fig. 8a has extremely

smooth interfaces and no defects except for a few
threading dislocations originating from the substrate. The

EFTEM elemental jump-ratio images in Fig. 8c–f indicate

chemically sharp interfaces for Ba, Ti, Ru, and Sr (i.e., all
cation species) and hence these results are very different

from the PZT systems presented before. It is worth

mentioning that it is only EFTEM that identifies all the
elements in the BTO heterolayer, since there is an overlap

in the EDS signals for Ba and Ti, as indicated in Table 2.

Nevertheless, EDS line scans were also acquired for Sr
and Ru (data not shown) and they do agree with the

EFTEM data. Notably, although BTO has a misfit almost

twice larger than the PZT 20/80 misfit, a defect-free
sample was achievable with no evidence of A-site diffu-

sion, thus underlying the critical role of the stability/

Fig. 8 HPOAS BTO, 40 nm:
a Bright field image, b elastic
image, c Sr jump-ratio image,
d Ti jump-ratio image, e Ru
jump-ratio image, and f Ba
jump-ratio image
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volatility of the cation species in obtaining chemically

sharp interfaces.

Conclusion

We have presented detailed TEM-based investigations on

three different ferroelectric systems, namely PbZr0.2Ti0.8
O3, PbZr0.52Ti0.48O3, and BaTiO3 deposited on SrRuO3/

SrTiO3 in order to compare and contrast the roles of lattice
mismatch versus the volatility of the deposited cation

species in the chemical stability of the ferroelectric–elec-

trode interface. A combination of imaging and spectros-
copy reveals distinct interdependencies among the thin-

film composition, thin-film deposition conditions as well as

the nature of chemical gradients observed across the fer-
roelectric–electrode interface. Sr diffusion from the elec-

trode into the ferroelectric film was found to be dominant

in PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 thin films. Conversely,
Pb diffusion was found to be prevalent in PbZr0.52Ti0.48O3/

SrRuO3/SrTiO3 thin films. The BaTiO3/SrRuO3/SrTiO3

heterostructure was found to have atomically sharp inter-
faces with no signature of any diffusion.
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