7,938 research outputs found

    Photon phonon entanglement in coupled optomechanical arrays

    Get PDF
    We consider an array of three optomechanical cavities coupled either reversibly or irreversibly to each other and calculate the amount of entanglement between the different optical and mechanical modes. We show the composite system exhibits intercavity photon-phonon entanglement.Comment: Restructured paper after referee comments, Published versio

    Signatures of the Pair-Coherent State

    Get PDF
    We explore in detail the possibility of generating a pair-coherent state in the non-degenerate parametric oscillator when decoherence is included. Such states are predicted in the transient regime in parametric oscillation where the pump mode is adiabatically eliminated. Two specific signatures are examined to indicate whether the state of interest has been generated, the Schrodinger cat state - like signatures, and the fidelity. Solutions in a transient regime reveal interference fringes which are indicative of the formation of a Schrodinger cat state. The fidelity indicates the purity of our prepared state compared to the ideal pair-coherent state.Comment: Figures hacked down to size for serve

    Teleportation using coupled oscillator states

    Get PDF
    We analyse the fidelity of teleportation protocols, as a function of resource entanglement, for three kinds of two mode oscillator states: states with fixed total photon number, number states entangled at a beam splitter, and the two-mode squeezed vacuum state. We define corresponding teleportation protocols for each case including phase noise to model degraded entanglement of each resource.Comment: 21 pages REVTeX, manuscript format, 7 figures postscript, many changes to pape

    Quantum Computation with Coherent States, Linear Interactions and Superposed Resources

    Get PDF
    We show that quantum computation circuits with coherent states as the logical qubits can be constructed using very simple linear networks, conditional measurements and coherent superposition resource states

    Entangled Coherent State Qubits in an Ion Trap

    Get PDF
    We show how entangled qubits can be encoded as entangled coherent states of two-dimensional centre-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving methods.Comment: 4 pages, No figures, accepted to PRA, minor chang

    Generating optical nonlinearity using trapped atoms

    Get PDF
    We describe a scheme for producing an optical nonlinearity using an interaction with one or more ancilla two-level atomic systems. The nonlinearity, which can be implemented using high efficiency fluorescence shelving measurements, together with general linear transformations is sufficient for simulating arbitrary Hamiltonian evolution on a Fock state qudit. We give two examples of the application of this nonlinearity, one for the creation of nonlinear phase shifts on optical fields as required in single photon quantum computation schemes, and the other for the preparation of optical Schrodinger cat states.Comment: Substantially extended from quant-ph/020815

    Selection from read-only memory with limited workspace

    Full text link
    Given an unordered array of NN elements drawn from a totally ordered set and an integer kk in the range from 11 to NN, in the classic selection problem the task is to find the kk-th smallest element in the array. We study the complexity of this problem in the space-restricted random-access model: The input array is stored on read-only memory, and the algorithm has access to a limited amount of workspace. We prove that the linear-time prune-and-search algorithm---presented in most textbooks on algorithms---can be modified to use Θ(N)\Theta(N) bits instead of Θ(N)\Theta(N) words of extra space. Prior to our work, the best known algorithm by Frederickson could perform the task with Θ(N)\Theta(N) bits of extra space in O(Nlg⁡∗N)O(N \lg^{*} N) time. Our result separates the space-restricted random-access model and the multi-pass streaming model, since we can surpass the Ω(Nlg⁡∗N)\Omega(N \lg^{*} N) lower bound known for the latter model. We also generalize our algorithm for the case when the size of the workspace is Θ(S)\Theta(S) bits, where lg⁥3N≀S≀N\lg^3{N} \leq S \leq N. The running time of our generalized algorithm is O(Nlg⁡∗(N/S)+N(lg⁥N)/lg⁥S)O(N \lg^{*}(N/S) + N (\lg N) / \lg{} S), slightly improving over the O(Nlg⁡∗(N(lg⁥N)/S)+N(lg⁥N)/lg⁥S)O(N \lg^{*}(N (\lg N)/S) + N (\lg N) / \lg{} S) bound of Frederickson's algorithm. To obtain the improvements mentioned above, we developed a new data structure, called the wavelet stack, that we use for repeated pruning. We expect the wavelet stack to be a useful tool in other applications as well.Comment: 16 pages, 1 figure, Preliminary version appeared in COCOON-201

    Entangling photons using a charged quantum dot in a microcavity

    Full text link
    We present two novel schemes to generate photon polarization entanglement via single electron spins confined in charged quantum dots inside microcavities. One scheme is via entangled remote electron spins followed by negatively-charged exciton emissions, and another scheme is via a single electron spin followed by the spin state measurement. Both schemes are based on giant circular birefringence and giant Faraday rotation induced by a single electron spin in a microcavity. Our schemes are deterministic and can generate an arbitrary amount of multi-photon entanglement. Following similar procedures, a scheme for a photon-spin quantum interface is proposed.Comment: 4 pages, 4 figure

    The entanglement beam splitter: a quantum-dot spin in a double-sided optical microcavity

    Full text link
    We propose an entanglement beam splitter (EBS) using a quantum-dot spin in a double-sided optical microcavity. In contrast to the conventional optical beam splitter, the EBS can directly split a photon-spin product state into two constituent entangled states via transmission and reflection with high fidelity and high efficiency (up to 100 percent). This device is based on giant optical circular birefringence induced by a single spin as a result of cavity quantum electrodynamics and the spin selection rule of trion transition (Pauli blocking). The EBS is robust and it is immune to the fine structure splitting in a realistic quantum dot. This quantum device can be used for deterministically creating photon-spin, photon-photon and spin-spin entanglement as well as a single-shot quantum non-demolition measurement of a single spin. Therefore, the EBS can find wide applications in quantum information science and technology.Comment: 7 pages, 5 figure
    • 

    corecore