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Entangled Coherent State Qubits in an Ion Trap
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We show how entangled qubits can be encoded as entangled coherent states of two–dimensional
centre-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent
to the canonical Bell state, and we introduce a proposal for entanglement transfer from the two
vibrational modes to the electronic states of the two ions in order for the Bell state to be detected
by resonance fluorescence shelving methods.

The qubit, or quantum bit, is the fundamental com-
ponent of information in quantum computation. In the
case of a spin-1/2 system, for some axis of orientation,
one can identify the up state with an on state, gener-
ally written as |1〉L ≡ |1〉, for 1 indicating on and the
L subscript indicating that this is a logical state. The
|0〉L ≡ |0〉, or off state, then corresponds to down for
this orientation. Qubits can thus be realised, in princi-
ple, in any spin-1/2 system, such as the electronic state
of a two-level atom, the polarisation of a single photon,
or the vibrational state of an ion which is restricted to
either zero- or one-phonon excitations. The concept of
qubits is useful for quantum information considerations,
but the qubit is also a useful construct for Bell inequality
tests [1,2] and for considering the maximally entangled
canonical Bell states.

It is not necessary to restrict a qubit encoding to sys-
tems with a two dimensional Hilbert space. For exam-
ple a more exotic form of qubit can be constructed from
superpositions of coherent states [3] and, as we show
here, by employing entangled coherent states [4]. De-
spite both the nonorthogonality of coherent states and
the unbounded Hilbert space, Bell inequality violations
are possible in both limits α→ 0 [4] and α→ ∞ [5], for α
the dimensionless amplitude of the coherent state. The
α → ∞ limit is achieved by representing the entangled
coherent states in a sub-space corresponding to two cou-
pled spin-1/2 systems, and ideal canonical Bell states are
realised in the α → ∞ limit. Entangled coherent states
can include the entanglement of even and odd coherent
states [6]), which can also be treated as coupled spin-
1/2 systems. The advantage of entangled even and odd
coherent states, as we show, is that the states are distin-
guishable by parity, so that heating which changes the
vibrational quanta correspond to bit flip errors, which
can be detected and corrected via the appropriate circuit
[7].

Here we show how the desired entangled coherent
states can be created for the two–dimensional centre-of-
mass vibrational mode state of two trapped ions. This
proposal involves the generalisation of experimental tech-
niques for generating even coherent states for the mo-

tional state of one ion in one dimension [8,9]. The advan-
tage of distinguishing the logical states by phonon num-
ber parity has been shown for the case of one–dimensional
motion [3,10]. We demonstrate that these entangled
coherent states can be represented as entangled qubit
states, and, moreover, such a state is equivalent to a
canonical Bell state up to unitary transformation with
respect to one of the two vibrational modes, that is up
to a local unitary transformation. In order to make mea-
surements on the entangled coherent states we give a pro-
cedure for swapping entanglement from the vibrational to
the internal electronic states of the ions which can then
be read by resonance shelving methods.

The two-mode coherent state

|α, β〉 ≡ |α〉a ⊗ |β〉b (1)

can be prepared in an entangled coherent state via the
mutual phase-shift interaction HI = h̄χa†ab†b; this in-
teraction has been studied in detail in the context of
quantum nondemolition measurements [11] and for im-
plementing phase gates for photon qubits [12]. In the ion
trap, the two-mode coherent state corresponds to a two–
dimensional Gaussian wavepacket for the centre-of-mass
motion of the two trapped ions. The mutual phase-shift
interaction between these two vibrational modes of free-
dom for the ion can be achieved by an appropriate Raman
laser excitation [13].

After an interaction time t = π/χ, the output state is
[14]

|ψ〉 =
1√
2

(|α〉a ⊗ |+〉b + | − α〉a ⊗ |−〉b)

=
1√
2

(|+〉a ⊗ |β〉b + |−〉a ⊗ | − β〉b) , (2)

where the even and odd coherent states are defined by

|±〉a ≡ N±(α) (|α〉a ± | − α〉a) ,

|±〉b ≡ N±(β) (|β〉b ± | − β〉b) , (3)

with N± being the appropriate normalisation coefficients
given by
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N±(ξ) = 1/
√

2 ± 2e−2|ξ|2 (4)

We will generally ignore these normalisation coefficients
unless otherwise stated.

The state in eq (2) is equivalent, up to a local (single-
oscillator) unitary transformation, to a Bell state for a
particular encoding. Following Ref [3], the logical states
are encoded in terms of even and odd coherent states, viz

|0〉 ↔ |+〉, |1〉 ↔ |−〉, (5)

and the Discrete Fourier Transform (DFT) states are rep-
resented by

|0〉 ↔ |0〉 + |1〉, |1〉 ↔ |0〉 − |1〉. (6)

We can ignore normalisation coefficients and write the
state (2) as

|ψ〉 = |0〉a ⊗ |0〉b + |1〉a ⊗ |1〉b
= |0〉a ⊗ |0〉b + |1〉a ⊗ |1〉b. (7)

A single-qubit rotation on either oscillator a or b of the
form

|0〉 → |0〉, |1〉 → |1〉 (8)

leads to |ψ〉 in eq (7) being in the maximally entangled
Bell state

|φ+〉 ≡ |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉. (9)

The Bell state (9) is entangled with respect to phonon
number parity. That is, the two–dimensional oscillations
are either both in even coherent states or in odd coherent
states. A bit flip error would destroy this parity entan-
glement. We now show how the prepared state |ψ〉 in
eq (2) can be transformed into the Bell state (9).

We must be able to implement the qubit rotation in
the logical basis of the mode, namely

(

|ψ0(θ)〉
|ψ1(θ)〉

)

=

(

cos θ i sin θ
i sin θ cos θ

) (

|0〉
|1〉

)

. (10)

We present one simple, but approximate, scheme to
achieve this rotation. For D(β) ≡ exp(βa† − β∗a) the
displacement operator, we can express the displaced co-
herent state as

D(β)|α〉 = eiIm(αβ∗)|α+ β〉 , (11)

which acquires a phase shift Im(αβ∗). Displacements can
be effected in ion traps via the Raman laser scheme [8,9].
We assume that bosonic coding employs coherent states
with real amplitudes, and we assume that ε ≡ −iβ is real
to obtain

D(iε)|α〉 ≈ eiαε|α+ iε〉. (12)

If we let θ = αε be fixed, with ε→ 0 and α→ ∞, then
we obtain the rotation (10) for

|ψ0(θ)〉 ∼ D(iε)|0〉, |ψ1(θ)〉 ∼ D(iε)|1〉. (13)

The displacement–effected rotation is approximate but
adequate for sufficiently small ε. In order to quantify the
effectiveness of this approach to rotation, we consider the
fidelity of the operation:

F = |〈ψ0(θ) |D(iε)|0〉|2

= |〈ψ1(θ) |D(iε)|1〉|2

= exp(−ε2). (14)

Here we have explicitly taken the normalisation in Eq. (3)
into account. The fidelity approaches unity exponentially
with respect to ε2 and hence is a good approximation for
small ε.

The Bell state can thus be created for the state of the
two–dimensional vibrational mode. However, direct de-
tection of the Bell state is not possible with current tech-
nology. An entanglement transfer from the vibrational
mode to the internal electronic states of the ions would
allow detection of the entanglement due to the existence
of the Bell state. The electronic state of an ion can be
‘rotated’ and read with current technology.

In order to transfer entanglement from vibrational to
electronic degrees of freedom, we need to be able to effect
the transfer

(c0|0〉 + c1|1〉) |0〉e → |0〉 (c0|0〉e + c1|1〉e) , (15)

for {|0〉e, |1〉e} the two electronic states of the ion. The
transfer (15) is achieved via the swap operation

|0〉 ⊗ |0〉e → |0〉 ⊗ |0〉e, (16a)

|0〉 ⊗ |1〉e → |1〉 ⊗ |0〉e, (16b)

|1〉 ⊗ |0〉e → |0〉 ⊗ |1〉e, (16c)

|1〉 ⊗ |1〉e → |1〉 ⊗ |1〉e. (16d)

The swap operation can be realised via a sequence of
three controlled CNot gates. The vibrational qubit is
the control and the electronic qubit is the target for the
first and third gates, and the reverse holds for the second
qubit. We now discuss how to realise these two types of
CNot gates.

In the first case, where the vibrational qubit is the
control, it is necessary for the electronic qubit to be pre-
pared in the ground state and to become excited if and
only if the vibrational qubit contains an odd number of
phonons. This transformation is achieved via the unitary
operator

Uve = exp
[

−iπa†aσy

]

× exp
[

iπa†a|1〉e〈1|
]

, (17)

which can be achieved by employing several Raman
pulses at the carrier frequency. Schneider et. al [16]
explicitly considered a unitary operator of the form
exp

[

−iπa†aσz

]

. Noting that σy = UσzU
†, where U

is a single qubit rotation, the exp
[

−iπa†aσy

]

operator
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can be achieved by first applying a single qubit rota-
tion to the electronic state and then by performing the
exp

[

−iπa†aσz

]

operation via Raman pulses.

The exp
[

−iπa†aσy

]

part of the unitary operator (17)
transforms the input states as follows:

exp
[

−iπa†aσy

]

|0〉 ⊗ |0〉e = |0〉 ⊗ |0〉e, (18a)

exp
[

−iπa†aσy

]

|0〉 ⊗ |1〉e = |0〉 ⊗ |1〉e, (18b)

exp
[

−iπa†aσy

]

|1〉 ⊗ |0〉e = −|1〉 ⊗ |1〉e, (18c)

exp
[

−iπa†aσy

]

|1〉 ⊗ |1〉e = |1〉 ⊗ |0〉e. (18d)

Whereas the operator exp
[

iπa†a|1〉e〈1|
]

flips the sign of
the |1〉 ⊗ |1〉e term

exp
[

iπa†a|1〉e〈1|
]

|1〉 ⊗ |1〉e = −|1〉 ⊗ |1〉e, (19)

while leaving the other states |0〉 ⊗ |0〉e, |0〉 ⊗ |1〉e and
|1〉 ⊗ |0〉e unchanged. Hence the unitary transformation
(17) is a CNot with the vibrational modes being the
control bit and the electronic mode the target.

The second CNot gate reverses the roles of the vi-
brational and electronic qubits. Therefore, phonon num-
ber parity must be changed if the ion is in the excited
state. The required unitary transformation is the condi-
tional displacement of the vibrational mode if and only if
the ion is in the excited state, and such conditional dis-
placements have been achieved experimentally [8,9]. The
corresponding unitary operator is

Uev = exp
[

iε
(

a+ a†
)

|1〉e〈1|
]

exp [−iπ|1〉e〈1|/2] , (20)

with θ = αε = π/2. The exp
[

iε
(

a+ a†
)

|1〉e〈1|
]

part in
(20) gives

exp
[

iε
(

a+ a†
)

|1〉e〈1|
]

|0〉 ⊗ |0〉e = |0〉 ⊗ |0〉e, (21a)

exp
[

iε
(

a+ a†
)

|1〉e〈1|
]

|0〉 ⊗ |1〉e = −|1〉 ⊗ |1〉e, (21b)

exp
[

iε
(

a+ a†
)

|1〉e〈1|
]

|1〉 ⊗ |0〉e = |1〉 ⊗ |0〉e, (21c)

exp
[

iε
(

a+ a†
)

|1〉e〈1|
]

|1〉 ⊗ |1〉e = −|0〉 ⊗ |1〉e, (21d)

while the second term exp [−iπ|1〉e〈1|/2] flips the sign of
the |0〉⊗ |1〉e and |1〉⊗ |1〉e states. Hence the unitary op-
erator (20) performs the required CNot operation with
the electronic mode as the control and the vibrational
mode as the target.

It is straightforward to then show that the sequence

Uswap = UveUevUve (22)

produces the desired entanglement swap. This sequence
should be achievable with current experimentally tech-
nology.

In current ion trap experiments heating of the vibra-
tional mode, though small, cannot be neglected. A sim-
ple model of heating for a vibrational mode with anni-
hilation operator a is described by the master equation
[15]

dρ

dt
=
γ

2

(

2a†ρa+ 2aρa† (23)

−(a†a+ aa†)ρ− ρ(a†a+ a†a)
)

. (24)

This master equation describes two conditional point
processes; one corresponds to an upward transition in
phonon number at rate γ〈aa†〉 and the other to a down-
ward transition at the rate γ〈a†a〉. For the states dis-
cussed in this paper these two rates are approximately
the same, at least initially. The mean value of the ampli-
tude does not decay, but the average energy increases at
the constant rate γ. We can thus model the heating by
two independent jump processes. We will assume that
over each run of the experiment, taking time τ , the heat-
ing rate is low enough that we only need to consider at
most a single jump, either up or down, with probabil-
ity δ = γ|α|2T . If only a single jump occurs, no matter
which way ( upwards or downwards), it flips the parity of
the state. In other words, heating leads to bit-flip errors.

Up to a fidelity of exp(−ε2), the pure Bell state ρ =
1
2 |φ+〉〈φ+| is obtained. In order to test a Bell inequality
with the the entangled coherent states, a large number
of runs of the experiment would need to be performed,
and the state may vary from one run to the next if bit
flip errors occur. Thus the test of the Bell inequality
is actually performed on a mixed state. Provided that
a time interval τ is chosen such that the probability of
more than one bit-flip error due to heating is negligible,
the density matrix for the state can be expressed as

ρ =
1

2
(1 − δ)|φ+〉〈φ+| + 1

2
δ|ψ+〉〈ψ+|, (25)

with

|ψ+〉 ≡ |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 (26)

being another of the four maximally entangled Bell
states. The Bell state |ψ+〉 is orthogonal to the desired
state |φ+〉.

The state given by (25) for δ sufficiently small must
violate the spin Bell inequality [1,2]

B =
∣

∣

∣
E (θ1, θ2) + E (θ1, θ

′
2)

+E (θ′1, θ2) − E (θ′1, θ
′
2)

∣

∣

∣
≤ 2 (27)

where the correlation function E (θ1, θ2) is given by the
expectation value

E (θ1, θ2) =
〈

σ
(1)
θ1
σ

(2)
θ2

〉

. (28)

Here the operator σ
(i)
θi

may be defined as

σ
(i)
θi

= cos θi σ
(i)
x + sin θi σ

(i)
y (29)

where the operators σ
(i)
a (with a = x, y or z) are the

a Pauli spin operators for the two–level system of atom
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i. The tunable parameters θi (i = 1, 2) control the pro-

portion of σ
(i)
x to σ

(i)
y in σ

(i)
θi

and function like variable
polarisers in the single–photon experiments.

In an ion trap this correlation function (28) is achieved
by first applying a single qubit rotations to both ions
and then by performing a simultaneous measurement
of σ̂z on both ions. The σ̂z measurement is achieved
with high precision via the shelving fluorescence tech-
nique [19]. The experiment is repeated over many runs
and the average gives the desired correlation function
E (θ1, θ2). Mathematically this correlation function can
be expressed in the form

E (θ1, θ2) = Tr

[

ρ V̂
1/2
1 (θ1) σ

(1)
z

(

V̂
1/2
1 (θ1)

)†

× V̂
1/2
2 (θ2) σ

(2)
z

(

V̂
1/2
2 (θ2)

)†
]

(30)

where the Cirac and Zoller single–qubit rotations [18]

V̂ k
i (φ) on the ith ion are given by

V̂ k
i (φ) = exp

[

−ik π
2

(

|1〉i〈0|e−iθi + |0〉i〈1|eiθi

)

]

. (31)

This single qubit rotation is achieved by applying a car-
rier pulse of length kπ with a phase θi.

Returning to the density matrix given by Eq. (25) it
is easily shown that the correlation function (28) has the
simplified form

E (θ1, θ2) = (1 − δ) cos (θ1 + θ2) + δ cos (θ1 − θ2) ; (32)

hence, the spin Bell inequality (27) for optimal angles
choices [20] reduces to

B = 2
√

2(1 − δ). (33)

A violation of this inequality is possible for B > 2, when
δ < 1− 1/

√
2. Whereas the Bell inequality is technically

violated, this does not present a loophole–free test due
to the limited temporal separation of the ions. It does
however completely close the detection loophole.

To summarise, we have described how entangled qubits
can be encoded as entangled coherent states of two–
dimensional centre-of-mass vibrational motion for two
ions in an ion trap. The entangled qubit state is equiv-
alent to the canonical Bell state, and by transferring
the entanglement from the two vibrational modes to the
electronic states of the two ions, the Bell state can be
detected by resonance fluorescence shelving methods.
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