72 research outputs found

    Bringing Social Science Into Critical Zone Science: Exploring Smallholder Farmers' Learning Preferences in Chinese Human‐Modified Critical Zones

    Get PDF
    There is a growing global emphasis on sustainable agriculture to reduce human impacts and improve delivery of Sustainable Development Goals (SDGs). With increasing investment in critical zone observatories (CZOs), it becomes important to understand how sustainable agricultural knowledge is produced, shared and used between different groups including farmers, scientists and government. To explore these issues, scientists leading the knowledge exchange (KE) component of a China‐UK CZO program studied three farming regions with contrasting geologies and varying economic levels, using a practice‐based research method. We demonstrate how additional funding for social science research allowed us to understand how farmers access and share farming knowledge through bonding, bridging and linking networks, and how this varies spatially, using interviews and survey questionnaires. Knowledge flows, barriers and opportunities for designing locally suited two‐way KE activities were identified. First, we highlight the need for a more locally, socially embedded and reflexive approach to build trust and better address pressing local environmental challenges. Second, we show how social science can usefully inform KE for collaborative, international development science, to draw on local knowledge, promote research impacts and capacity building while avoiding knowledge mismatches. Lastly, a blueprint for the design and funding of future CZOs, social‐ecological and planetary health research agendas that combine science, social science, local knowledge and KE is presented, including the need for substantive social science research to take place in addition to science research in human‐modified landscapes—enabling the CZ science to be better grounded in, informed by and useful to local communities

    Bringing Social Science Into Critical Zone Science:Exploring Smallholder Farmers' Learning Preferences in Chinese Human-Modified Critical Zones

    Get PDF
    There is a growing global emphasis on sustainable agriculture to reduce human impacts and improve delivery of Sustainable Development Goals (SDGs). With increasing investment in critical zone observatories (CZOs), it becomes important to understand how sustainable agricultural knowledge is produced, shared and used between different groups including farmers, scientists and government. To explore these issues, scientists leading the knowledge exchange (KE) component of a China-UK CZO program studied three farming regions with contrasting geologies and varying economic levels, using a practice-based research method. We demonstrate how additional funding for social science research allowed us to understand how farmers access and share farming knowledge through bonding, bridging and linking networks, and how this varies spatially, using interviews and survey questionnaires. Knowledge flows, barriers and opportunities for designing locally suited two-way KE activities were identified. First, we highlight the need for a more locally, socially embedded and reflexive approach to build trust and better address pressing local environmental challenges. Second, we show how social science can usefully inform KE for collaborative, international development science, to draw on local knowledge, promote research impacts and capacity building while avoiding knowledge mismatches. Lastly, a blueprint for the design and funding of future CZOs, social-ecological and planetary health research agendas that combine science, social science, local knowledge and KE is presented, including the need for substantive social science research to take place in addition to science research in human-modified landscapes—enabling the CZ science to be better grounded in, informed by and useful to local communities

    Policies on children and schools during the SARS-CoV-2 pandemic in Western Europe.

    Get PDF
    During the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mitigation policies for children have been a topic of considerable uncertainty and debate. Although some children have co-morbidities which increase their risk for severe coronavirus disease (COVID-19), and complications such as multisystem inflammatory syndrome and long COVID, most children only get mild COVID-19. On the other hand, consistent evidence shows that mass mitigation measures had enormous adverse impacts on children. A central question can thus be posed: What amount of mitigation should children bear, in response to a disease that is disproportionally affecting older people? In this review, we analyze the distinct child versus adult epidemiology, policies, mitigation trade-offs and outcomes in children in Western Europe. The highly heterogenous European policies applied to children compared to adults did not lead to significant measurable differences in outcomes. Remarkably, the relative epidemiological importance of transmission from school-age children to other age groups remains uncertain, with current evidence suggesting that schools often follow, rather than lead, community transmission. Important learning points for future pandemics are summarized

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF
    BACKGROUND: Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19. METHODS: The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 μg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 μg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing. FINDINGS: Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6-77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3-214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030-27 162), which increased to 37 460 ELU/mL (31 996-43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41-1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996-30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826-64 452), with a geometric mean fold change of 2·19 (1·90-2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37-14·32) and 15·90 (12·92-19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24-16·54] in the BNT162b2 group and 6·22 [3·90-9·92] in the mRNA-1273 group). INTERPRETATION: Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose. FUNDING: UK Vaccine Task Force and National Institute for Health Research

    Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: three month analyses of the COV-BOOST trial

    Get PDF
    OBJECTIVES: To evaluate the persistence of immunogenicity three months after third dose boosters. METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. The analysis was conducted using all randomised participants who were SARS-CoV-2 naïve during the study. RESULTS: Among the 2883 participants randomised, there were 2422 SARS-CoV-2 naïve participants until D84 visit included in the analysis with median age of 70 (IQR: 30-94) years. In the participants who had two initial doses of ChAd, schedules using mRNA vaccines as third dose have the highest anti-spike IgG at D84 (e.g. geometric mean concentration of 8674 ELU/ml (95% CI: 7461-10085) following ChAd/ChAd/BNT). However, in people who had two initial doses of BNT there was no significant difference at D84 in people given ChAd versus BNT (geometric mean ratio (GMR) of 0.95 (95%CI: 0.78, 1.15). Also, people given Ad26.COV2.S (Janssen; hereafter referred to as Ad26) as a third dose had significantly higher anti-spike IgG at D84 than BNT (GMR of 1.20, 95%CI: 1.01,1.43). Responses at D84 between people who received BNT (15 μg) or BNT (30 μg) after ChAd/ChAd or BNT/BNT were similar, with anti-spike IgG GMRs of half-BNT (15 μg) versus BNT (30 μg) ranging between 0.74-0.86. The decay rate of cellular responses were similar between all the vaccine schedules and doses. CONCLUSIONS: 84 days after a third dose of COVID-19 vaccine the decay rates of humoral response were different between vaccines. Adenoviral vector vaccine anti-spike IgG concentration at D84 following BNT/BNT initial doses were higher than for a three dose (BNT/BNT/BNT) schedule. Half dose BNT immune responses were similar to full dose responses. While high antibody tires are desirable in situations of high transmission of new variants of concern, the maintenance of immune responses that confer long-lasting protection against severe disease or death is also of critical importance. Policymakers may also consider adenoviral vector, fractional dose of mRNA, or other non-mRNA vaccines as third doses

    Comparison of UK paediatric SARS-CoV-2 admissions across the first and second pandemic waves

    Get PDF
    Background: We hypothesised that theclinical characteristics of hospitalised children and young people(CYP) with SARS-CoV-2 in the UK second wave (W2) would differ from the firstwave (W1) due to the alpha variant (B.1.1.7), school reopening and relaxation of shielding. Methods: Prospective multicentre observational cohort study of patients <19 years hospitalised in the UK with SARS-CoV-2 between 17/01/20 and 31/01/21. Clinical characteristics were compared between W1 and W2 (W1 = 17/01/20-31/07/20,W2 =01/08/20-31/01/21). Results: 2044 CYP < 19 years from 187 hospitals. 427/2044 (20.6%) with asymptomatic/incidental SARS-CoV-2 were excluded from main analysis. 16.0% (248/1548) of symptomatic CYP were admitted to critical care and 0.8% (12/1504) died. 5.6% (91/1617) of symptomatic CYP had Multisystem Inflammatory Syndrome in Children (MIS-C). After excluding CYP with MIS-C, patients in W2 had lower Paediatric Early Warning Scores (PEWS, composite vital sign score), lower antibiotic use and less respiratory and cardiovascular support than W1. The proportion of CYP admitted to critical care was unchanged. 58.0% (938/1617) of symptomatic CYP had no reported comorbidity. Patients without co-morbidities were younger (42.4%, 398/938, <1 year), had lower PEWS, shorter length of stay and less respiratory support. Conclusions: We found no evidence of increased disease severity in W2 vs W1. A large proportion of hospitalised CYP had no comorbidity. Impact: No evidence of increased severity of COVID-19 admissions amongst children and young people (CYP) in the second vs first wave in the UK, despite changes in variant, relaxation of shielding and return to face-to-face schooling.CYP with no comorbidities made up a significant proportion of those admitted. However, they had shorter length of stays and lower treatment requirements than CYP with comorbidities once those with MIS-C were excluded.At least 20% of CYP admitted in this cohort had asymptomatic/incidental SARS-CoV-2 infection.This paper was presented to SAGE to inform CYP vaccination policy in the UK

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF

    Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: Three month analyses of the COV-BOOST trial (vol 84, pg 795, 2022)

    Get PDF
    The authors regret that there has been an error published within Fig. 5 of this article. The authors inadvertently pasted the anti-spike plots for the “≥70 years” group instead of the pseudo-neutralising antibody plots (pages 808–809) to Fig. 5A and B. These plots replicate the “≥70 years” group in Fig. 4A and B on pages 806–807. The authors have confirmed that the error does not affect the interpretation of the results and the rest of the paper, and the plots for the “<70 years” group in Fig. 5 are correct. The revised Fig. 5 contains the correct plots for pseudo-neutralising antibody data has now been updated in the original publication. The authors would like to apologise for any inconvenience caused
    corecore