5,756 research outputs found

    Geometric Hamilton-Jacobi Theory

    Full text link
    The Hamilton-Jacobi problem is revisited bearing in mind the consequences arising from a possible bi-Hamiltonian structure. The problem is formulated on the tangent bundle for Lagrangian systems in order to avoid the bias of the existence of a natural symplectic structure on the cotangent bundle. First it is developed for systems described by regular Lagrangians and then extended to systems described by singular Lagrangians with no secondary constraints. We also consider the example of the free relativistic particle, the rigid body and the electron-monopole system.Comment: 40 page

    A Novel Low-Cost Sensor Prototype for Nocturia Monitoring in Older People

    Get PDF
    Indexación: Scopus.This work was supported in part by CORFO - CENS 16CTTS-66390 through the National Center on Health Information Systems, in part by the National Commission for Scientific and Technological Research (CONICYT) through the program STIC-AMSUD 17STIC-03: ‘‘e-MONITOR âĂŞ Chronic Disease: Ambient Assisted Living and vital teleMONOTORing for e-health,’’ FONDEF ID16I10449 ‘‘Sistema inteligente para la gestión y análisis de la dotación de camas en la red asistencial del sector público,’’ and MEC80170097 ‘‘Red de colaboración científica entre universidades nacionales e internacionales para la estructuración del doctorado y magister en informática médica en la Universidad de Valparaíso.’’ The work of V. H. C. de Albuquerque was supported by the Brazilian National Council for Research and Development (CNPq) under Grant #304315/2017-6.Nocturia is frequently defined as the necessity to get out of bed at least one time during the night to urinate, with each of these episodes being preceded and continued by sleep. Several studies suggest that an increase of nocturia is seen with the onset of age, occurring in around 70% of adults over the age of 70. Its appearance is associated with detrimental quality of life for those who present nocturia, since it leads to daytime sleepiness, cognitive dysfunction, among others. Currently, a voiding diary is necessary for nocturia assessment; these are prone to bias due to their inherent subjectivity. In this paper, we present the design of a low-cost device that automatically detects micturition events. The device obtained 73% in sensibility and 81% in specificity; these results show that systems such as the proposed one can be a valuable tool for the medical team when evaluating nocturia. © 2013 IEEE.https://ieeexplore.ieee.org/document/845445

    A novel monitoring system for fall detection in older people

    Get PDF
    Indexación: Scopus.This work was supported in part by CORFO - CENS 16CTTS-66390 through the National Center on Health Information Systems, in part by the National Commission for Scientific and Technological Research (CONICYT) through the Program STIC-AMSUD 17STIC-03: ‘‘MONITORing for ehealth," FONDEF ID16I10449 ‘‘Sistema inteligente para la gestión y análisis de la dotación de camas en la red asistencial del sector público’’, and in part by MEC80170097 ‘‘Red de colaboración científica entre universidades nacionales e internacionales para la estructuración del doctorado y magister en informática médica en la Universidad de Valparaíso’’. The work of V. H. C. De Albuquerque was supported by the Brazilian National Council for Research and Development (CNPq), under Grant 304315/2017-6.Each year, more than 30% of people over 65 years-old suffer some fall. Unfortunately, this can generate physical and psychological damage, especially if they live alone and they are unable to get help. In this field, several studies have been performed aiming to alert potential falls of the older people by using different types of sensors and algorithms. In this paper, we present a novel non-invasive monitoring system for fall detection in older people who live alone. Our proposal is using very-low-resolution thermal sensors for classifying a fall and then alerting to the care staff. Also, we analyze the performance of three recurrent neural networks for fall detections: Long short-term memory (LSTM), gated recurrent unit, and Bi-LSTM. As many learning algorithms, we have performed a training phase using different test subjects. After several tests, we can observe that the Bi-LSTM approach overcome the others techniques reaching a 93% of accuracy in fall detection. We believe that the bidirectional way of the Bi-LSTM algorithm gives excellent results because the use of their data is influenced by prior and new information, which compares to LSTM and GRU. Information obtained using this system did not compromise the user's privacy, which constitutes an additional advantage of this alternative. © 2013 IEEE.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=842305

    Measurement driven quantum evolution

    Full text link
    We study the problem of mapping an unknown mixed quantum state onto a known pure state without the use of unitary transformations. This is achieved with the help of sequential measurements of two non-commuting observables only. We show that the overall success probability is maximized in the case of measuring two observables whose eigenstates define mutually unbiased bases. We find that for this optimal case the success probability quickly converges to unity as the number of measurement processes increases and that it is almost independent of the initial state. In particular, we show that to guarantee a success probability close to one the number of consecutive measurements must be larger than the dimension of the Hilbert space. We connect these results to quantum copying, quantum deleting and entanglement generation.Comment: 7 pages, 1 figur

    Patch Antenna Based on Metamaterials for a RFID Transponder

    Get PDF
    In this paper a self-diplexed antenna is proposed for a RFID transponder application. The development cycle is divided into two stages: antenna design and filters design. The antenna is based on a square microstrip patch filled with metamaterial structures. The inclusion of these structures allows simultaneous operation over several frequencies, which can be arbitrarily chosen. The antenna working frequencies are chosen to be 2.45 GHz (receiver) and 1.45 GHz (transmitter). In addition, the antenna is fed through two orthogonal coupled microstrip lines, what provides higher isolation between both ports. Some filters based on metamaterial particles are coupled or connected to the antenna feeding microstrip lines to avoid undesired interferences. This approach avoids using of an external filter or diplexer, providing larger size reduction and a compact self-diplexed antenna

    The "K-Correction" for Irradiated Emission Lines in LMXBs: Evidence for a Massive Neutron Star in X1822-371 (V691 CrA)

    Full text link
    We study the K-correction for the case of emission lines formed in the X-ray illuminated atmosphere of a Roche lobe filling star. We compute the K-correction as function of the mass ratio 'q' and the disc flaring angle 'alpha' using a compact binary code where the companion's Roche lobe is divided into 10^5 resolution elements. We also study the effect of the inclination angle in the results. We apply our model to the case of the neutron star low-mass X-ray binary X1822-371 (V691 CrA), where a K-emission velocity K_em=300 +-8 km/s has been measured by Casares et al. (2003). Our numerical results, combined with previous determination of system parameters, yields 1.61Msun < M_NS < 2.32Msun and 0.44Msun < M_2 < 0.56Msun for the two binary components(i. e. 0.24 < q < 0.27), which provide a compelling evidence for a massive neutron star in this system. We also discuss the implications of these masses into the evolutionary history of the binary.Comment: 6 pages, 5 figures. Accepted for publication in Ap

    Phase-Field Model of Silicon Carbide Growth During Isothermal Condition

    Full text link
    Silicon carbide (SiC) emerges as a promising ceramic material for high-temperature structural applications, especially within the aerospace sector. The utilization of SiC-based ceramic matrix composites (CMCs) instead of superalloys in components like engine shrouds, combustors, and nozzles offers notable advantages, including a 25% improvement in fuel efficiency, over 10% enhanced thrust, and the capability to withstand up to 500^{\circ}C higher operating temperatures. Employing a CALPHAD-reinforced multi-phase-field model, our study delves into the evolution of the SiC layer under isothermal solidification conditions. By modeling the growth of SiC between liquid Si and solid C at 1450^{\circ}C, we compared results with experimental microstructures and quantitatively examined the evolution of SiC thickness over time. Efficient sampling across the entire model space mitigated uncertainty in high-temperature kinetic parameters, allowing us to predict a range of growth rates and morphologies for the SiC layer. The model accounts for parameter uncertainty stemming from limited experimental knowledge and successfully predicts relevant morphologies for the system. Experimental results validated the kinetic parameters of the simulations, offering valuable insights and potential constraints on the reaction kinetics. We further explored the significance of multi-phase-field model parameters on two key outputs, and found that the diffusion coefficient of liquid Si emerges as the most crucial parameter significantly impacting the SiC average layer thickness and grain count over time. This study provides valuable insights into the microstructure evolution of the Si-C binary system, offering pertinent information for the engineering of CMCs in industrial applications
    corecore