15,892 research outputs found

    Digital filter synthesis computer program

    Get PDF
    Digital filter synthesis computer program expresses any continuous function of a complex variable in approximate form as a computational algorithm or difference equation. Once the difference equation has been developed, digital filtering can be performed by the program on any input data list

    The non-linear q-voter model

    Get PDF
    We introduce a non-linear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have an unanimous opinion, still a voter can flip its state with probability ϵ\epsilon. We solve the model on a fully connected network (i.e. in mean-field) and compute the exit probability as well as the average time to reach consensus. We analyze the results in the perspective of a recently proposed Langevin equation aimed at describing generic phase transitions in systems with two (Z2Z_2 symmetric) absorbing states. We find that in mean-field the q-voter model exhibits a disordered phase for high ϵ\epsilon and an ordered one for low ϵ\epsilon with three possible ways to go from one to the other: (i) a unique (generalized voter-like) transition, (ii) a series of two consecutive Ising-like and directed percolation transition, and (iii) a series of two transitions, including an intermediate regime in which the final state depends on initial conditions. This third (so far unexplored) scenario, in which a new type of ordering dynamics emerges, is rationalized and found to be specific of mean-field, i.e. fluctuations are explicitly shown to wash it out in spatially extended systems.Comment: 9 pages, 7 figure

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities

    Constraining differential renormalization in abelian gauge theories

    Full text link
    We present a procedure of differential renormalization at the one loop level which avoids introducing unnecessary renormalization constants and automatically preserves abelian gauge invariance. The amplitudes are expressed in terms of a basis of singular functions. The local terms appearing in the renormalization of these functions are determined by requiring consistency with the propagator equation. Previous results in abelian theories, with and without supersymmetry, are discussed in this context.Comment: 13 pages, LaTeX. Some equations corrected and a reference added. Complete ps paper also available at http://www-ftae.ugr.es/papiros.html or ftp://ftae3.ugr.es/pub/rmt/ugft73.p
    • …
    corecore