105 research outputs found

    Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations

    Get PDF
    The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (> 5‰) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks

    Aphanitic buildup from the onset of the Mulde Event (Homerian, middle Silurian) at Whitman’s Hill, Herefordshire, UK: ultrastructural insights into proposed microbial fabrics; pp. 287–292

    No full text
    A microbial origin has been proposed for matrix-supported, low-diversity buildups reported from different palaeocontinents during the onset of the Mulde positive carbon isotope excursion. We have investigated a small aphanitic buildup from the Lower Quarried Limestone Member of the Much Wenlock Limestone Formation, exposed at Whitman's Hill (Herefordshire), corresponding to the central part of the Midland Platform (UK). Up to 50% of the rock volume in this buildup consists of mottled micrite. The SEM studies revealed that the micrite is largely detrital and does not show features characteristic of calcareous cyanobacteria or leiolites. The aphanitic character of the buildup is suggested to be controlled by the depositional rate, and the widespread occurrence of matrix-supported reefs in this interval to be driven by a mid-Homerian rapid eustatic transgression

    Fabric transitions from shell accumulations to reefs: an introduction with Palaeozoic examples

    Full text link
    One unresolved conceptual problem in some Palaeozoic sedimentary strata is the boundary between the concepts of ‘shell concentration’ and ‘reef’. In fact, numerous bioclastic strata are transitional coquina–reef deposits, because either distinct frame-building skeletons are not commonly preserved in growth position, or skeletal remains are episodically encrusted by ‘stabilizer’ (reef-like) organisms, such as calcareous and problematic algae, encrusting microbes, bryozoans, foraminifers and sponges. The term ‘parabiostrome’, coined by Kershaw, can be used to describe some stratiform bioclastic deposits formed through the growth and destruction, by fair-weather wave and storm wave action, of meadows and carpets bearing frame-building (archaeocyaths, bryozoans, corals, stromatoporoids, etc.) and/or epibenthic, non-frame-building (e.g. pelmatozoan echinoderms, spiculate sponges and many brachiopods) organisms. This paper documents six Palaeozoic examples of stabilized coquinas leading to (pseudo)reef frameworks. Some of them formed by storm processes (generating reef soles, aborted reefs or being part of mounds) on ramps and shelves and were consolidated by either encrusting organisms or early diagenesic processes, whereas others, bioclastic-dominated shoals in barrier shelves, were episodically stabilized by encrusting organisms, indicating distinct episodes in which shoals ceased their lateral migratio
    corecore