86 research outputs found

    Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango

    Get PDF
    Mango is characterized by high tocopherol and carotenoid content during ripening. From a cDNA screen of differentially expressing genes during mango ripening, a full-length p-hydroxyphenylpyruvate dioxygenase (MiHPPD) gene homologue was isolated that encodes a key enzyme in the biosynthesis of tocopherols. The gene encoded a 432-amino-acid protein. Transcript analysis during different stages of ripening revealed that the gene is ripening related and rapidly induced by ethylene. The increase in MiHPPD transcript accumulation was followed by an increase in tocopherol levels during ripening. The ripening-related increase in MiHPPD expression was also seen in response to abscisic acid and to alesser extent to indole-3-acetic acid. The expression of MiHPPD was not restricted to fruits but was also seen in other tissues such as leaves particularly during senescence. The strong ethylene induction of MiHPPD was also seen in young leaves indicating that ethylene induction of MiHPPD is tissue independent. Promoter analysis of MiHPPD gene in tomato discs and leaves of stable transgenic lines of Arabidopsis showed that the cis elements for ripening-related, ethylene-responsive, and senescence-related expression resided within the 1590 nt region upstream of the ATG codon. Functionality of the gene was demonstrated by the ability of the expressed protein in bacteria to convert p-hydroxyphenylpyruvate to homogentisate. These results provide the first evidence for HPPD expression during ripening of a climacteric fruit

    Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought

    Get PDF
    This study evaluated the possible role of hydrogen peroxide (H2O2) in the acclimation of a Mediterranean shrub, Cistus albidus L., to summer drought growing under Mediterranean field conditions. For this purpose, changes in H2O2 concentrations and localization throughout a year were analysed. H2O2 changes in response to environmental conditions in parallel with changes in abscisic acid (ABA) and oxidative stress markers, together with lignin accumulation, xylem and sclerenchyma differentiation, and leaf area were also investigated. During the summer drought, leaf H2O2 concentrations increased 11-fold, reaching values of 10 μmol g−1 dry weight (DW). This increase occurred mainly in mesophyll cell walls, xylem vessels, and sclerenchyma cells in the differentiation stage. An increase in ABA levels preceded that of H2O2, but both peaked at the same time in conditions of prolonged stress. C. albidus plants tolerated high concentrations of H2O2 because of its localization in the apoplast of mesophyll cells, xylem vessels, and in differentiating sclerenchyma cells. The increase in ABA, and consequently of H2O2, in plants subjected to drought stress might induce a 3.5-fold increase in ascorbic acid (AA), which maintained and even decreased its oxidative status, thus protecting plants from oxidative damage. After recovery from drought following late-summer and autumn rainfall, a decrease in ABA, H2O2, and AA to their basal levels (∼60 pmol g−1 DW, ∼1 μmol g−1 DW, and ∼20 μmol g−1 DW) was observed

    JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis

    No full text
    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H(2)O(2))-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H(2)O(2) levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H(2)O(2) treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H(2)O(2) level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A

    Influence of soil water content and atmospheric conditions on leaf water potential in cv. "Touriga Nacional" deep-rooted vineyards

    Get PDF
    Abstract In this study, the influence of soil and atmosphere conditions on noon and basal leaf water potential of vines ‘‘Touriga Nacional’’ in the Da˜o region submitted to different irrigation treatments is analysed. Both indicators showed to be dependent on environmental conditions at the time of measurement. Leaf water potential at noon of fully watered plants was linearly related with atmospheric conditions, with values registered when vapour pressure deficit (VPD) was higher than approximately 3 kPa being no different from the values registered in stressed plants. Therefore, this indicator cannot be reliably used to distinguish different plant water stress levels when atmospheric conditions induce high evaporative demands. The basal leaf water potential (wb) was also influenced by VPD at the time of measurement for all soil water conditions. In well irrigated plants, it was even possible to establish a baseline that can therefore be used to identify nonwater stressed conditions (wb (MPa) = -0.062–0.0972 VPD (kPa), r2 = 0.78). A good correlation was found between soil humidity and wb. However, more than the average value of the whole thickness of soil monitored, the wb values were dependent on the distribution of soil humidity, with the plants responding to the presence of wet layers

    Identification of QTL underlying vitamin E contents in soybean seed among multiple environments

    Get PDF
    Vitamin E (VE) in soybean seed has value for foods, medicines, cosmetics, and animal husbandry. Selection for higher VE contents in seeds along with agronomic traits was an important goal for many soybean breeders. In order to map the loci controlling the VE content, F5-derived F6 recombinant inbred lines (RILs) were advanced through single-seed-descent (SSD) to generate a population including 144 RILs. The population was derived from a cross between ‘OAC Bayfield’, a soybean cultivar with high VE content, and ‘Hefeng 25’, a soybean cultivar with low VE content. A total of 107 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. Seed VE contents were analyzed by high performance liquid chromatography for multiple years and locations (Harbin in 2007 and 2008, Hulan in 2008 and Suihua in 2008). Four QTL associated with α-Toc (on four linkage groups, LGs), eight QTL associated with γ-Toc (on eight LGs), four QTL associated with δ-Toc (on four LGs) and five QTL associated with total VE (on four LGs) were identified. A major QTL was detected by marker Satt376 on linkage group C2 and associated with α-Toc (0.0012 > P > 0.0001, 5.0% < R2 < 17.0%, 25.1 < α-Toc < 30.1 μg g−1), total VE (P < 0.0001, 7.0% < R2 < 10.0%, 118.2 < total VE < 478.3 μg g−1). A second QTL detected by marker Satt286 on LG C2 was associated with γ-Toc (0.0003 > P > 0.0001, 6.0% < R2 < 13.0%, 141.5 < γ-Toc < 342.4 μg g−1) and total VE (P < 0.0001, 2.0% < R2 < 9.0%, 353.9 < total VE < 404.0 μg g−1). Another major QTL was detected by marker Satt266 on LG D1b that was associated with α-Toc (0.0002 > P > 0.0001, 4.0% < R2 < 6.0%, 27.7 < α-Toc < 43.7 μg g−1) and γ-Toc (0.0032 > P > 0.0001, 3.0% < R2 < 10.0%, 69.7 < γ-Toc < 345.7 μg g−1). Since beneficial alleles were all from ‘OAC Bayfield’, it was concluded that these three QTL would have great potential value for marker assisted selection for high VE content

    Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global transcriptional analysis of loblolly pine (<it>Pinus taeda </it>L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine.</p> <p>Results</p> <p>Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10<sup>-30</sup>) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function.</p> <p>Conclusion</p> <p>PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the genes identified are known to be up-regulated in response to osmotic stress in pine and other plant species and encode proteins involved in both signal transduction and stress tolerance. Gene expression levels returned to control values within a 48-hour recovery period in all but 76 transcripts. Correlation network analysis indicates a scale-free network topology for the pine root transcriptome and identifies central nodes that may serve as drivers of drought-responsive transcriptome dynamics in the roots of loblolly pine.</p
    corecore