208 research outputs found

    Two Stellar Components in the Halo of the Milky Way

    Full text link
    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo -- that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.Comment: Two stand-alone files in manuscript, concatenated together. The first is for the main paper, the second for supplementary information. The version is consistent with the version published in Natur

    Concurrent use of prescription drugs and herbal medicinal products in older adults: A systematic review

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The use of herbal medicinal products (HMPs) is common among older adults. However, little is known about concurrent use with prescription drugs as well as the potential interactions associated with such combinations. Objective Identify and evaluate the literature on concurrent prescription and HMPs use among older adults to assess prevalence, patterns, potential interactions and factors associated with this use. Methods Systematic searches in MEDLINE, PsycINFO, EMBASE, CINAHL, AMED, Web of Science and Cochrane from inception to May 2017 for studies reporting concurrent use of prescription medicines with HMPs in adults (β‰₯65 years). Quality was assessed using the Joanna Briggs Institute checklists. The Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) three stage approach to mixed method research was used to synthesise data. Results Twenty-two studies were included. A definition of HMPs or what was considered HMP was frequently missing. Prevalence of concurrent use by older adults varied widely between 5.3% and 88.3%. Prescription medicines most combined with HMPs were antihypertensive drugs, beta blockers, diuretics, antihyperlipidemic agents, anticoagulants, analgesics, antihistamines, antidiabetics, antidepressants and statins. The HMPs most frequently used were: ginkgo, garlic, ginseng, St John’s wort, Echinacea, saw palmetto, evening primrose oil and ginger. Potential risks of bleeding due to use of ginkgo, garlic or ginseng with aspirin or warfarin was the most reported herb-drug interaction. Some data suggests being female, a lower household income and less than high school education were associated with concurrent use. Conclusion Prevalence of concurrent prescription drugs and HMPs use among older adults is substantial and potential interactions have been reported. Knowledge of the extent and manner in which older adults combine prescription drugs will aid healthcare professionals can appropriately identify and manage patients at risk.Peer reviewedFinal Published versio

    Ex-vivo changes in amino acid concentrations from blood stored at room temperature or on ice: implications for arginine and taurine measurements

    Get PDF
    Background: Determination of the plasma concentrations of arginine and other amino acids is important for understanding pathophysiology, immunopathology and nutritional supplementation in human disease. Delays in processing of blood samples cause a change in amino acid concentrations, but this has not been precisely quantified. We aimed to describe the concentration time profile of twenty-two amino acids in blood from healthy volunteers, stored at room temperature or on ice.Methods: Venous blood was taken from six healthy volunteers and stored at room temperature or in an ice slurry. Plasma was separated at six time points over 24 hours and amino acid levels were determined by high-performance liquid chromatography.Results: Median plasma arginine concentrations decreased rapidly at room temperature, with a 6% decrease at 30 minutes, 25% decrease at 2 hours and 43% decrease at 24 hours. Plasma ornithine increased exponentially over the same period. Plasma arginine was stable in blood stored on ice, with a < 10% change over 24 hours. Plasma taurine increased by 100% over 24 hours, and this change was not prevented by ice. Most other amino acids increased over time at room temperature but not on ice.Conclusion: Plasma arginine concentrations in stored blood fall rapidly at room temperature, but remain stable on ice for at least 24 hours. Blood samples taken for the determination of plasma amino acid concentrations either should be placed immediately on ice or processed within 30 minutes of collection

    Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells

    Get PDF
    Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation

    Peptidases compartmentalized to the Ascaris suum intestinal lumen and apical intestinal membrane

    Get PDF
    The nematode intestine is a tissue of interest for developing new methods of therapy and control of parasitic nematodes. However, biological details of intestinal cell functions remain obscure, as do the proteins and molecular functions located on the apical intestinal membrane (AIM), and within the intestinal lumen (IL) of nematodes. Accordingly, methods were developed to gain a comprehensive identification of peptidases that function in the intestinal tract of adult female Ascaris suum. Peptidase activity was detected in multiple fractions of the A. suum intestine under pH conditions ranging from 5.0 to 8.0. Peptidase class inhibitors were used to characterize these activities. The fractions included whole lysates, membrane enriched fractions, and physiological- and 4 molar urea-perfusates of the intestinal lumen. Concanavalin A (ConA) was confirmed to bind to the AIM, and intestinal proteins affinity isolated on ConA-beads were compared to proteins from membrane and perfusate fractions by mass spectrometry. Twenty-nine predicted peptidases were identified including aspartic, cysteine, and serine peptidases, and an unexpectedly high number (16) of metallopeptidases. Many of these proteins co-localized to multiple fractions, providing independent support for localization to specific intestinal compartments, including the IL and AIM. This unique perfusion model produced the most comprehensive view of likely digestive peptidases that function in these intestinal compartments of A. suum, or any nematode. This model offers a means to directly determine functions of these proteins in the A. suum intestine and, more generally, deduce the wide array functions that exist in these cellular compartments of the nematode intestine

    An Observational Cohort Study of the Kynurenine to Tryptophan Ratio in Sepsis: Association with Impaired Immune and Microvascular Function

    Get PDF
    Both endothelial and immune dysfunction contribute to the high mortality rate in human sepsis, but the underlying mechanisms are unclear. In response to infection, interferon-Ξ³ activates indoleamine 2,3-dioxygenase (IDO) which metabolizes the essential amino acid tryptophan to the toxic metabolite kynurenine. IDO can be expressed in endothelial cells, hepatocytes and mononuclear leukocytes, all of which contribute to sepsis pathophysiology. Increased IDO activity (measured by the kynurenine to tryptophan [KT] ratio in plasma) causes T-cell apoptosis, vasodilation and nitric oxide synthase inhibition. We hypothesized that IDO activity in sepsis would be related to plasma interferon-Ξ³, interleukin-10, T cell lymphopenia and impairment of microvascular reactivity, a measure of endothelial nitric oxide bioavailability. In an observational cohort study of 80 sepsis patients (50 severe and 30 non-severe) and 40 hospital controls, we determined the relationship between IDO activity (plasma KT ratio) and selected plasma cytokines, sepsis severity, nitric oxide-dependent microvascular reactivity and lymphocyte subsets in sepsis. Plasma amino acids were measured by high performance liquid chromatography and microvascular reactivity by peripheral arterial tonometry. The plasma KT ratio was increased in sepsis (median 141 [IQR 64–235]) compared to controls (36 [28–52]); p<0.0001), and correlated with plasma interferon-Ξ³ and interleukin-10, and inversely with total lymphocyte count, CD8+ and CD4+ T-lymphocytes, systolic blood pressure and microvascular reactivity. In response to treatment of severe sepsis, the median KT ratio decreased from 162 [IQR 100–286] on day 0 to 89 [65–139] by day 7; pβ€Š=β€Š0.0006) and this decrease in KT ratio correlated with a decrease in the Sequential Organ Failure Assessment score (p<0.0001). IDO-mediated tryptophan catabolism is associated with dysregulated immune responses and impaired microvascular reactivity in sepsis and may link these two fundamental processes in sepsis pathophysiology

    PDGF-C Induces Maturation of Blood Vessels in a Model of Glioblastoma and Attenuates the Response to Anti-VEGF Treatment

    Get PDF
    Recent clinical trials of VEGF inhibitors have shown promise in the treatment of recurrent glioblastomas (GBM). However, the survival benefit is usually short-lived as tumors escape anti-VEGF therapies. Here we tested the hypothesis that Platelet Derived Growth Factor-C (PDGF-C), an isoform of the PDGF family, affects GBM progression independent of VEGF pathway and hinders anti-VEGF therapy.We first showed that PDGF-C is present in human GBMs. Then, we overexpressed or downregulated PDGF-C in a human GBM cell line, U87MG, and grew them in cranial windows in nude mice to assess vessel structure and function using intravital microscopy. PDGF-C overexpressing tumors had smaller vessel diameters and lower vascular permeability compared to the parental or siRNA-transfected tumors. Furthermore, vessels in PDGF-C overexpressing tumors had more extensive coverage with NG2 positive perivascular cells and a thicker collagen IV basement membrane than the controls. Treatment with DC101, an anti-VEGFR-2 antibody, induced decreases in vessel density in the parental tumors, but had no effect on the PDGF-C overexpressing tumors.These results suggest that PDGF-C plays an important role in glioma vessel maturation and stabilization, and that it can attenuate the response to anti-VEGF therapy, potentially contributing to escape from vascular normalization

    Gene therapy for carcinoma of the breast: Genetic ablation strategies

    Get PDF
    The gene therapy strategy of mutation compensation is designed to rectify the molecular lesions that are etiologic for neoplastic transformation. For dominant oncogenes, such approaches involve the functional knockout of the dysregulated cellular control pathways provoked by the overexpressed oncoprotein. On this basis, molecular interventions may be targeted to the transcriptional level of expression, via antisense or ribozymes, or post-transcriptionally, via intracellular single chain antibodies (intrabodies). For carcinoma of the breast, these approaches have been applied in the context of the disease linked oncogenes erbB-2 and cyclin D(1), as well as the estrogen receptor. Neoplastic revision accomplished in modal systems has rationalized human trials on this basis
    • …
    corecore