209 research outputs found

    The Luminosity Function for L>L* Galaxies at z > 3

    Get PDF
    Through use of multiband (U, B, R, I) photometry we have isolated high redshift (3.0<z<3.5) galaxy candidates in a survey of 1.27 deg^2 to R = 21.25 and a survey of 0.02 deg^2 to R = 23.5. Our pool of candidates constrains the nature of the 3.0 < z < 3.5 luminosity function over the range L* < L < 100 L*, if we grant a similar level of completeness to these data as for very faint samples (to R = 25.5) selected in a similar fashion. Our constraints agree with the high redshift sky density at R = 20.5 estimated from Yee et al.'s (1996) serendipitous discovery of a bright, z = 2.7 galaxy, as well as the density at R ~ 23 by Steidel et al. (1996b). We strongly rule out -- by more than two orders of magnitude at M(R) = -25 -- the L > L* luminosity function for z = 3-5 galaxies obtained by a photometric redshift analysis of the Hubble Deep Field (HDF) by Gwyn & Hartwick (1996). Our results at R ~ 23 are more consistent with the photometric redshift analysis of the faint HDF galaxies by Sawicki & Yee (1996), but our present upper limits at the brightest magnitudes (R < 21.5, M(R) < -24) allow more generous volume densities of these super-L* galaxies.Comment: Accepted for publication in ApJ Letters; 14 pages Latex, including 3 figure

    Survey incompleteness and the evolution of the QSO luminosity function

    Get PDF
    We concentrate on a type of QSO survey which depends on selecting QSO candidates based on combinations of colors. Since QSO's have emission lines and power-law continua, they are expected to yield broadband colors unlike those of stellar photospheres. Previously, the fraction of QSO's expected to be hiding (unselected) within the locus of stellar (U-J, J-F) colors was estimated at about 15 percent. We have now verified that the KK88 survey is at least 11 percent incomplete, but have determined that it may be as much as 34 percent incomplete. The 'missing' QSO's are expected to be predominantly at z less than or = 2.2. We have studied the proper motion and variability properties of all stellar objects with J less than or = 22.5 or F less than or = 21.5 in the SA 57 field which has previously been surveyed with a multicolor QSO search by KK88

    Spectroscopy of Quasar Candidates from SDSS Commissioning Data

    Get PDF
    The Sloan Digital Sky Survey has obtained images in five broad-band colors for several hundred square degrees. We present color-color diagrams for stellar objects, and demonstrate that quasars are easily distinguished from stars by their distinctive colors. Follow-up spectroscopy in less than ten nights of telescope time has yielded 22 new quasars, 9 of them at z>3.65z> 3.65, and one with z=4.75z = 4.75, the second highest-redshift quasar yet known. Roughly 80% of the high-redshift quasar candidates selected by color indeed turn out to be high-redshift quasars.Comment: 4 pages, 3 figures, to appear in the proceedings of "After the Dark Ages: When Galaxies were Young (the Universe at 2<z<5)", 9th Annual October Astrophysics Conference in Marylan

    Photometric redshifts from reconstructed QSO templates

    Get PDF
    From SDSS commissioning photometric and spectroscopic data, we investigate the utility of photometric redshift techniques to the task of estimating QSO redshifts. We consider empirical methods (e.g. nearest-neighbor searches and polynomial fitting), standard spectral template fitting and hybrid approaches (i.e. training spectral templates from spectroscopic and photometric observations of QSOs). We find that in all cases, due to the presence of strong emission-lines within the QSO spectra, the nearest-neighbor and template fitting methods are superior to the polynomial fitting approach. Applying a novel reconstruction technique, we can, from the SDSS multicolor photometry, reconstruct a statistical representation of the underlying SEDs of the SDSS QSOs. Although, the reconstructed templates are based on only broadband photometry the common emission lines present within the QSO spectra can be recovered in the resulting spectral energy distributions. The technique should be useful in searching for spectral differences among QSOs at a given redshift, in searching for spectral evolution of QSOs, in comparing photometric redshifts for objects beyond the SDSS spectroscopic sample with those in the well calibrated photometric redshifts for objects brighter than 20th magnitude and in searching for systematic and time variable effects in the SDSS broad band photometric and spectral photometric calibrations.Comment: 21 pages, 9 figures, LaTeX AASTeX, submitted to A

    New Halo White Dwarf Candidates in the Sloan Digital Sky Survey

    Get PDF
    We present optical spectroscopy and near-infrared photometry of 57 faint (g = 19–22) high proper motion white dwarfs identified through repeat imaging of ≈3100 deg2 of the Sloan Digital Sky Survey footprint by Munn et al. We use ugriz and JHphotometry to perform a model atmosphere analysis, and identify 10 ultracool white dwarfs with Teff \u3c 4000 K, including the coolest pure H atmosphere white dwarf currently known, J1657+2638, with Teff = 3550 ± 100 K. The majority of the objects with cooling ages larger than 9 Gyr display thick disc kinematics and constrain the age of the thick disc to ≥11 Gyr. There are four white dwarfs in our sample with large tangential velocities (vtan \u3e 120 km s−1) and UVW velocities that are more consistent with the halo than the Galactic disc. For typical 0.6M ⊙ white dwarfs, the cooling ages for these halo candidates range from 2.3 to 8.5 Gyr. However, the total mainsequence+ white dwarf cooling ages of these stars would be consistent with the Galactic halo if they are slightly undermassive. Given the magnitude limits of the current large-scale surveys, many of the coolest and oldest white dwarfs remain undiscovered in the solar neighbourhood, but upcoming surveys such as Gaia and the Large Synoptic Survey Telescope should find many of these elusive thick disc and halo white dwarfs

    New Halo White Dwarf Candidates in the Sloan Digital Sky Survey

    Get PDF
    We present optical spectroscopy and near-infrared photometry of 57 faint (g = 19–22) high proper motion white dwarfs identified through repeat imaging of ≈3100 deg2 of the Sloan Digital Sky Survey footprint by Munn et al. We use ugriz and JHphotometry to perform a model atmosphere analysis, and identify 10 ultracool white dwarfs with Teff \u3c 4000 K, including the coolest pure H atmosphere white dwarf currently known, J1657+2638, with Teff = 3550 ± 100 K. The majority of the objects with cooling ages larger than 9 Gyr display thick disc kinematics and constrain the age of the thick disc to ≥11 Gyr. There are four white dwarfs in our sample with large tangential velocities (vtan \u3e 120 km s−1) and UVW velocities that are more consistent with the halo than the Galactic disc. For typical 0.6M ⊙ white dwarfs, the cooling ages for these halo candidates range from 2.3 to 8.5 Gyr. However, the total mainsequence+ white dwarf cooling ages of these stars would be consistent with the Galactic halo if they are slightly undermassive. Given the magnitude limits of the current large-scale surveys, many of the coolest and oldest white dwarfs remain undiscovered in the solar neighbourhood, but upcoming surveys such as Gaia and the Large Synoptic Survey Telescope should find many of these elusive thick disc and halo white dwarfs

    NYU-VAGC: a galaxy catalog based on new public surveys

    Full text link
    Here we present the New York University Value-Added Galaxy Catalog (NYU-VAGC), a catalog of local galaxies (mostly below a redshift of about 0.3) based on a set of publicly-released surveys (including the 2dFGRS, 2MASS, PSCz, FIRST, and RC3) matched to the Sloan Digital Sky Survey (SDSS) Data Release 2. Excluding areas masked by bright stars, the photometric sample covers 3514 square degrees and the spectroscopic sample covers 2627 square degrees (with about 85% completeness). Earlier, proprietary versions of this catalog have formed the basis of many SDSS investigations of the power spectrum, correlation function, and luminosity function of galaxies. We calculate and compile derived quantities (for example, K-corrections and structural parameters for galaxies). The SDSS catalog presented here is photometrically recalibrated, reducing systematic calibration errors across the sky from about 2% to about 1%. We include an explicit description of the geometry of the catalog, including all imaging and targeting information as a function of sky position. Finally, we have performed eyeball quality checks on a large number of objects in the catalog in order to flag deblending and other errors. This catalog is complementary to the SDSS Archive Servers, in that NYU-VAGC's calibration, geometrical description, and conveniently small size are specifically designed for studying galaxy properties and large-scale structure statistics using the SDSS spectroscopic catalog.Comment: accepted by AJ; full resolution version available at http://sdss.physics.nyu.edu/vagc/va_paper.ps; data files available at http://sdss.physics.nyu.edu/vagc

    Exploring the Local Milky Way: M Dwarfs as Tracers of Galactic Populations

    Full text link
    We have assembled a spectroscopic sample of low-mass dwarfs observed as part of the Sloan Digital Sky Survey along one Galactic sightline, designed to investigate the observable properties of the thin and thick disks. This sample of ~7400 K and M stars also has measured ugriz photometry, proper motions, and radial velocities. We have computed UVW space motion distributions, and investigate their structure with respect to vertical distance from the Galactic Plane. We place constraints on the velocity dispersions of the thin and thick disks, using two-component Gaussian fits. We also compare these kinematic distributions to a leading Galactic model. Finally, we investigate other possible observable differences between the thin and thick disks, such as color, active fraction and metallicity.Comment: 11 pages, 12 figures, Accepted by A
    • …
    corecore