112 research outputs found

    Infected Cell Protein No. 22 Is Subject to Proteolytic Cleavage by Caspases Activated by a Mutant That Induces Apoptosis

    Get PDF
    AbstractEarlier reports have shown that the d120 mutant of herpes simplex virus 1 lacking both copies of the gene encoding the infected cells protein No. 4 (ICP4) induces apoptosis in a variety of cell lines. The programmed cell death induced by this mutant is blocked by overexpression of Bcl-2 or by transduction of infected cells with the gene encoding the viral US3 protein kinase. HEp-2 cells infected with the d120 mutant express predominantly α proteins. Studies on these proteins revealed the accumulation of a Mr 37,500 protein that reacted with antibody directed against the carboxyl-terminal domain of ICP22. We report that the Mr 37,500 protein is a product of the proteolytic cleavage of ICP22 by a caspase activated by the d120 mutant. Thus the accumulation of the Mr 37,500 protein was blocked in cells transduced with the US3 protein kinase, in cells overexpressing Bcl-2, or in infected cells treated with the general caspase inhibitor zVAD-fmk. Exposure of ICP22 made in wild-type virus-infected cells to caspase 3 yielded two polypeptides, of which one could not be differentiated from the Mr 37,500 protein with respect to electrophoretic mobility. We conclude that the cellular apoptotic response targets at least one viral protein for destruction

    HCMV Targets the Metabolic Stress Response through Activation of AMPK Whose Activity Is Important for Viral Replication

    Get PDF
    Human Cytomegalovirus (HCMV) infection induces several metabolic activities that have been found to be important for viral replication. The cellular AMP-activated protein kinase (AMPK) is a metabolic stress response kinase that regulates both energy-producing catabolic processes and energy-consuming anabolic processes. Here we explore the role AMPK plays in generating an environment conducive to HCMV replication. We find that HCMV infection induces AMPK activity, resulting in the phosphorylation and increased abundance of several targets downstream of activated AMPK. Pharmacological and RNA-based inhibition of AMPK blocked the glycolytic activation induced by HCMV-infection, but had little impact on the glycolytic pathway of uninfected cells. Furthermore, inhibition of AMPK severely attenuated HCMV replication suggesting that AMPK is an important cellular factor for HCMV replication. Inhibition of AMPK attenuated early and late gene expression as well as viral DNA synthesis, but had no detectable impact on immediate-early gene expression, suggesting that AMPK activity is important at the immediate early to early transition of viral gene expression. Lastly, we find that inhibition of the Ca2+-calmodulin-dependent kinase kinase (CaMKK), a kinase known to activate AMPK, blocks HCMV-mediated AMPK activation. The combined data suggest a model in which HCMV activates AMPK through CaMKK, and depends on their activation for high titer replication, likely through induction of a metabolic environment conducive to viral replication

    Divergent Effects of Human Cytomegalovirus and Herpes Simplex Virus-1 on Cellular Metabolism

    Get PDF
    Viruses rely on the metabolic network of the host cell to provide energy and macromolecular precursors to fuel viral replication. Here we used mass spectrometry to examine the impact of two related herpesviruses, human cytomegalovirus (HCMV) and herpes simplex virus type-1 (HSV-1), on the metabolism of fibroblast and epithelial host cells. Each virus triggered strong metabolic changes that were conserved across different host cell types. The metabolic effects of the two viruses were, however, largely distinct. HCMV but not HSV-1 increased glycolytic flux. HCMV profoundly increased TCA compound levels and flow of two carbon units required for TCA cycle turning and fatty acid synthesis. HSV-1 increased anapleurotic influx to the TCA cycle through pyruvate carboxylase, feeding pyrimidine biosynthesis. Thus, these two related herpesviruses drive diverse host cells to execute distinct, virus-specific metabolic programs. Current drugs target nucleotide metabolism for treatment of both viruses. Although our results confirm that this is a robust target for HSV-1, therapeutic interventions at other points in metabolism might prove more effective for treatment of HCMV

    ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the International Space Station

    Get PDF
    The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station ECOSTRESS) was launched to the International Space Station on June 29, 2018. The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as level‐3 (L3) latent heat flux (LE) data products. These data are generated from the level‐2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear‐sky ET product (L3_ET_PT‐JPL, version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear‐sky instantaneous/time of overpass: r2 = 0.88; overall bias = 8%; normalized RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are over‐represented. The 70 m high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1 km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data

    Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet

    Get PDF
    Osteoporosis and low bone mineral density affect millions of Americans. The majority of adults in North America have insufficient intake of vitamin D and calcium along with inadequate exercise. Physicians are aware that vitamin D, calcium and exercise are essential for maintenance of bone health. Physicians are less likely to be aware that dietary insufficiencies of magnesium, silicon, Vitamin K, and boron are also widely prevalent, and each of these essential nutrients is an important contributor to bone health. In addition, specific nutritional factors may improve calcium metabolism and bone formation. It is the authors’ opinion that nutritional supplements should attempt to provide ample, but not excessive, amounts of factors that are frequently insufficient in the typical American diet

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology

    Meal for Two: Human Cytomegalovirus-Induced Activation of Cellular Metabolism

    No full text
    Viruses are parasites that depend on the host cell&rsquo;s metabolic resources to provide the energy and molecular building blocks necessary for the production of viral progeny. It has become increasingly clear that viruses extensively modulate the cellular metabolic network to support productive infection. Here, we review the numerous ways through which human cytomegalovirus (HCMV) modulates cellular metabolism, highlighting known mechanisms of HCMV-mediated metabolic manipulation and identifying key outstanding questions that remain to be addressed

    The Impact of Oncogenic Signaling on Metabolic Stress Responses and Human Cytomegalovirus Infection

    No full text
    Thesis (Ph.D.)--University of Rochester. School of Medicine & Dentistry. Dept. of Biochemistry and Biophysics, 2016.Viral oncoproteins and cellular mutations drive malignant transformation. These oncogenic alterations induce metabolic changes and dependencies that can be targeted to kill cancerous cells. In my first project, we find that oncogenic Ras expression activates fatty acid biosynthesis and confers sensitivity to fatty acid biosynthetic inhibition in human fibroblasts. In addition, we find that a human breast cancer cell line harboring an oncogenic Ras mutation is more sensitive to fatty acid biosynthetic inhibition relative to a non-transformed human breast epithelial cell line (MCF10A). To further explore the impact of specific oncogenic alleles on epithelial cells, we created isogenic MCF10A cells expressing oncogenic Ras. Our data show that oncogenic Ras expression increases fatty acid biosynthesis and sensitizes MCF10A cells to fatty acid biosynthetic inhibition without increasing cellular proliferation. Together, our results indicate that oncogenic Ras confers sensitivity to fatty acid biosynthetic inhibition in human fibroblasts and epithelial cells. This oncogene-induced sensitivity may make an attractive target for therapeutic intervention. In my second project, we investigated the mechanisms that restrict human cytomegalovirus (HCMV) replication in cancerous cells. These mechanisms of viral restriction represent vulnerabilities that could be therapeutically exploited in other contexts. We explored these mechanisms by determining whether defined oncogenic alleles could inhibit HCMV replication. We find that expression of the SV40 T antigens (TAg) blocks HCMV infection in human fibroblasts. The earliest restriction of HCMV infection involves a block of viral entry. Subsequently, we found that TAg expression reduces the abundance of platelet-derived growth factor receptor α (PDGFRα), a host protein important for HCMV entry. Viral entry into TAg-immortalized fibroblasts could largely be rescued by PDGFRα over-expression. However, robust production of viral progeny was not restored by PDGFRα over-expression in TAg-immortalized fibroblasts. In TAg-expressing fibroblasts, the immediate early 2 (IE2) protein was not rescued to the same extent as the immediate early 1 protein. Transduction of IE2 largely rescued HCMV gene expression in TAg-expressing fibroblasts, but did not rescue virion production. Collectively, our data indicate that oncogenic alleles induce multiple restrictions to HCMV replication, the mechanisms of which may provide novel strategies to limit HCMV infection
    corecore