323 research outputs found
Response of potential cucurbit rootstocks against Meloidogyne spp
the Cucurbita hybrids, usually used as cucurbit rootstocks, are
susceptible to Meloidogyne.
Its cultivation increases the nematode population densities
at similar levels than ungrafted cucumber or melon crops, and
higher 'Ievels than watermelon.Postprint (published version
The PrHand: Functional Assessment of an Underactuated Soft-Robotic Prosthetic Hand
Functional tests aim to compare the functionality
of a prosthesis with a human hand. The main objective of
this work is to present and evaluate an affordable prosthesis
(PrHand) built with soft robotic technologies and novel joints
based on compliant mechanisms. Two functional tests have
been selected in this work. The first is the AHAP protocol,
which evaluates how the prosthesis performs eight different
grips; three variables are considered: grasping, maintaining,
and grasping ability score (GAS). The results were 69.03%
with 57.77% in grasping and 80.28% in maintaining. The
second test is the AM-ULA, which evaluates the prosthesis by
performing 23 Activities of Daily Living. PrHand prosthesis
had a score of 2.5 over 4.0. The functionality of the PrHand
prosthesis has similar results to other prostheses evaluated
in the literature. The comparison with the human hand was
69%. PrHand presents a promising solution for amputees in
developing countries regarding cost and functionalit
Recommended from our members
Fucose Sensing Regulates Bacterial Intestinal Colonization
The mammalian gastrointestinal (GI) tract provides a complex and competitive environment for the microbiota1. Successful colonization by pathogens depends on scavenging nutrients, sensing chemical signals, competing with the resident bacteria, and precisely regulating expression of virulence genes2. The GI pathogen enterohemorrhagic E.coli (EHEC) relies on inter-kingdom chemical sensing systems to regulate virulence gene expression3–4. Here we show that these systems control the expression of a novel two-component signal transduction system, named FusKR, where FusK is the histidine sensor kinase (HK), and FusR the response regulator (RR). FusK senses fucose and controls expression of virulence and metabolic genes. This fucose-sensing system is required for robust EHEC colonization of the mammalian intestine. Fucose is highly abundant in the intestine5. Bacteroides thetaiotaomicron (B.theta) produces multiple fucosidases that cleave fucose from host glycans, resulting in high fucose availability in the gut lumen6. During growth in mucin, B.theta contributes to EHEC virulence by cleaving fucose from mucin, thereby activating the FusKR signaling cascade, modulating EHEC’s virulence gene expression. Our findings suggest that EHEC uses fucose, a host-derived signal made available by the microbiota, to modulate EHEC pathogenicity and metabolism
Charge distribution in two-dimensional electrostatics
We examine the stability of ringlike configurations of N charges on a plane
interacting through the potential . We interpret the equilibrium distributions in terms of a shell
model and compare predictions of the model with the results of numerical
simulations for systems with up to 100 particles.Comment: LaTe
Recommended from our members
Autotransporters but not pAA are critical for rabbit colonization by Shiga toxin-producing Escherichia coli O104:H4
The outbreak of diarrhea and hemolytic uremic syndrome that occurred in Germany in 2011 was caused by a Shiga toxin-producing enteroaggregative Escherichia coli (EAEC) strain. The strain was classified as EAEC due to the presence of a plasmid (pAA) that mediates a characteristic pattern of aggregative adherence on cultured cells, the defining feature of EAEC that has classically been associated with virulence. Here, we describe an infant rabbit-based model of intestinal colonization and diarrhea caused by the outbreak strain, which we use to decipher the factors that mediate the pathogen’s virulence. Shiga toxin is the key factor required for diarrhea. Unexpectedly, we observe that pAA is dispensable for intestinal colonization and development of intestinal pathology. Instead, chromosome-encoded autotransporters are critical for robust colonization and diarrheal disease in this model. Our findings suggest that conventional wisdom linking aggregative adherence to EAEC intestinal colonization is false for at least a subset of strains
Cucumis metuliferus is resistant to root-knot nematode Mi1.2 gene (a)virulent populations and a promising melon rootstock
[EN] Pot experiments were carried out to characterize the response of two Cucumis metuliferus accessions against (a)virulent Meloidogyne arenaria, M. incognita or M. javanica populations, to Mi1.2 gene and to determine the compatibility and the effect on physicochemical properties of cantaloupe melon. In addition, histopathological studies were conducted. Plants were inoculated in 200 cm3 -pots with 1 J2 cm-3 24 of soil containing sterilized sand a week after transplanting and maintained in a growth chamber at 25 ºC for 40 days. The susceptible cucumber cv. Dasher II or melon cv. Paloma were included for comparison. The number of egg masses and number of eggs per plant were assessed, and the reproduction index (RI) was calculated as the percentage of eggs produced on the C. metuliferus accessions respect those produced on the susceptible cultivars. The compatibility and fruit quality was assessed grafting three scions (two of Charentais type) and one of type Piel de Sapo under commercial greenhouse conditions. The resistance level of both C. metuliferus accessions ranged from highly (RI < 1%) to resistant (1% ¿RI ¿ 10%) irrespective of Meloidogyne populations. Melon plants grafted onto C. metuliferus accession BGV11135 grew as selfgrafted plants and did not modify negatively fruit quality traits. Giant cells induced by RKN on C. metuliferus were mostly poor developed compared to those on cucumber. Furthermore, necrotic areas surrounding the nematode were observed. C. metuliferus accession BGV11135 could be a promising melon rootstock to manage Meloidogyne spp. irrespective of its (a)virulent Mi1.2 condition without melon fruit quality reduction.This work was supported by AGL2013-49040-C2-1-R, and AGL2014-53398-C2-2-R projects from the Spanish Ministry of Economy, Industry and Competitiveness, and cofounded with FEDER Funds. The authors would like to thank Semillas Fito for providing melon cv. Paloma, Dr Christine Vos (Scientia Terrae Research Institute) for her English revision and critical comments of the manuscript and Dr Nuria Escudero (Universitat Politecnica de Catalunya) for her support and critical comments on the manuscript.Expósito, A.; Munera, M.; Giné, A.; López Gómez, M.; Cáceres-Burbano, A.; Picó Sirvent, MB.; Gisbert Domenech, MC.... (2018). Cucumis metuliferus is resistant to root-knot nematode Mi1.2 gene (a)virulent populations and a promising melon rootstock. Plant Pathology. 67:1161-1167. https://doi.org/10.1111/ppa.12815S1161116767Cortada, L., Sorribas, F. J., Ornat, C., Kaloshian, I., & Verdejo-Lucas, S. (2008). Variability in infection and reproduction ofMeloidogyne javanicaon tomato rootstocks with theMiresistance gene. Plant Pathology, 57(6), 1125-1135. doi:10.1111/j.1365-3059.2008.01906.xDavis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., & Zhang, X. (2008). Grafting Effects on Vegetable Quality. HortScience, 43(6), 1670-1672. doi:10.21273/hortsci.43.6.1670Devran, Z., & Söğüt, M. A. (2010). Occurrence of virulent root-knot nematode populations on tomatoes bearing the Mi gene in protected vegetable-growing areas of Turkey. Phytoparasitica, 38(3), 245-251. doi:10.1007/s12600-010-0103-yDjian-Caporalino, C., Palloix, A., Fazari, A., Marteu, N., Barbary, A., Abad, P., … Castagnone-Sereno, P. (2014). Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biology, 14(1), 53. doi:10.1186/1471-2229-14-53Giné, A., & Sorribas, F. J. (2016). Effect of plant resistance and BioAct WG (Purpureocillium lilacinumstrain 251) onMeloidogyne incognitain a tomato-cucumber rotation in a greenhouse. Pest Management Science, 73(5), 880-887. doi:10.1002/ps.4357Giné, A., & Sorribas, F. J. (2017). Quantitative approach for the early detection of selection for virulence of Meloidogyne incognita
on resistant tomato in plastic greenhouses. Plant Pathology, 66(8), 1338-1344. doi:10.1111/ppa.12679Giné, A., López-Gómez, M., Vela, M. D., Ornat, C., Talavera, M., Verdejo-Lucas, S., & Sorribas, F. J. (2014). Thermal requirements and population dynamics of root-knot nematodes on cucumber and yield losses under protected cultivation. Plant Pathology, 63(6), 1446-1453. doi:10.1111/ppa.12217Giné, A., González, C., Serrano, L., & Sorribas, F. J. (2017). Population dynamics of Meloidogyne incognita on cucumber grafted onto the Cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation. European Journal of Plant Pathology, 148(4), 795-805. doi:10.1007/s10658-016-1135-zGisbert C Sorribas FJ Martínez EM Gammoudi N Bernat G Picó B 2014 Grafting melons onto potential Cucumis spp. rootstocks http://upcommons.upc.edu/bitstream/handle/2117/27982/Grafting%20melons.pdf?sequence=1Gisbert, C., Gammoudi, N., Munera, M., Giné, A., Pocurull, M., Sorribas, F. J., & Picó, M. B. (2017). Evaluation of two potentialCucumisspp. resources for grafting melons. Acta Horticulturae, (1151), 157-162. doi:10.17660/actahortic.2017.1151.25Guan, W., Zhao, X., Dickson, D. W., Mendes, M. L., & Thies, J. (2014). Root-knot Nematode Resistance, Yield, and Fruit Quality of Specialty Melons Grafted onto Cucumis metulifer. HortScience, 49(8), 1046-1051. doi:10.21273/hortsci.49.8.1046Hadisoeganda, W. W. (1982). Resistance of Tomato, Bean, Southern Pea, and Garden Pea Cultivars to Root-Knot Nematodes Based on Host Suitability. Plant Disease, 66(1), 145. doi:10.1094/pd-66-145Lee, J.-M., & Oda, M. (2010). Grafting of Herbaceous Vegetable and Ornamental Crops. Horticultural Reviews, 61-124. doi:10.1002/9780470650851.ch2Leonardi, C., Kyriacou, M. C., Gisbert, C., Oztekin, G. B., Mourão, I., & Rouphael, Y. (s. f.). Quality of grafted vegetables. Vegetable grafting: principles and practices, 216-244. doi:10.1079/9781780648972.0216Liu, B., Ren, J., Zhang, Y., An, J., Chen, M., Chen, H., … Ren, H. (2014). A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agronomy for Sustainable Development, 35(1), 251-259. doi:10.1007/s13593-014-0234-5López-Gómez, M., Gine, A., Vela, M. D., Ornat, C., Sorribas, F. J., Talavera, M., & Verdejo-Lucas, S. (2014). Damage functions and thermal requirements ofMeloidogyne javanicaandMeloidogyne incognitaon watermelon. Annals of Applied Biology, 165(3), 466-473. doi:10.1111/aab.12154López-Gómez, M., Flor-Peregrín, E., Talavera, M., Sorribas, F. J., & Verdejo-Lucas, S. (2015). Population dynamics of Meloidogyne javanica and its relationship with the leaf chlorophyll content in zucchini. Crop Protection, 70, 8-14. doi:10.1016/j.cropro.2014.12.015López-Gómez, M., Talavera, M., & Verdejo-Lucas, S. (2015). Differential reproduction ofMeloidogyne incognitaandM. javanicain watermelon cultivars and cucurbit rootstocks. Plant Pathology, 65(1), 145-153. doi:10.1111/ppa.12394Omwega, C. O. (1988). A Nondestructive Technique for Screening Bean Germ Plasm for Resistance to Meloidogyne incognita. Plant Disease, 72(11), 970. doi:10.1094/pd-72-0970Ornat, C., Verdejo-Lucas, S., & Sorribas, F. J. (2001). A Population of Meloidogyne javanica in Spain Virulent to the Mi Resistance Gene in Tomato. Plant Disease, 85(3), 271-276. doi:10.1094/pdis.2001.85.3.271Seinhorst, J. W. (1965). The Relation Between Nematode Density and Damage To Plants. Nematologica, 11(1), 137-154. doi:10.1163/187529265x00582Sikora, R. A., & Fernández, E. (s. f.). Nematode parasites of vegetables. Plant parasitic nematodes in subtropical and tropical agriculture, 319-392. doi:10.1079/9780851997278.0319Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., Galeano, M., & Valero, J. (2005). Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. European Journal of Plant Pathology, 111(1), 29-38. doi:10.1007/s10658-004-1982-xSoteriou, G. A., Kyriacou, M. C., Siomos, A. S., & Gerasopoulos, D. (2014). Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chemistry, 165, 282-289. doi:10.1016/j.foodchem.2014.04.120Talavera, M., Verdejo-Lucas, S., Ornat, C., Torres, J., Vela, M. D., Macias, F. J., … Sorribas, F. J. (2009). Crop rotations with Mi gene resistant and susceptible tomato cultivars for management of root-knot nematodes in plastic houses. Crop Protection, 28(8), 662-667. doi:10.1016/j.cropro.2009.03.015Talavera, M., Sayadi, S., Chirosa-Ríos, M., Salmerón, T., Flor-Peregrín, E., & Verdejo-Lucas, S. (2012). Perception of the impact of root-knot nematode-induced diseases in horticultural protected crops of south-eastern Spain. Nematology, 14(5), 517-527. doi:10.1163/156854112x635850Thies, J. A., Ariss, J. J., Hassell, R. L., Olson, S., Kousik, C. S., & Levi, A. (2010). Grafting for Management of Southern Root-Knot Nematode, Meloidogyne incognita, in Watermelon. Plant Disease, 94(10), 1195-1199. doi:10.1094/pdis-09-09-0640Trionfetti Nisini, P., Colla, G., Granati, E., Temperini, O., Crinò, P., & Saccardo, F. (2002). Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Scientia Horticulturae, 93(3-4), 281-288. doi:10.1016/s0304-4238(01)00335-1Tzortzakakis, E. A., Adam, M. A. M., Blok, V. C., Paraskevopoulos, C., & Bourtzis, K. (2005). Occurrence of Resistance-breaking Populations of Root-knot Nematodes on Tomato in Greece. European Journal of Plant Pathology, 113(1), 101-105. doi:10.1007/s10658-005-1228-6Verdejo-Lucas, S., Cortada, L., Sorribas, F. J., & Ornat, C. (2009). Selection of virulent populations ofMeloidogyne javanicaby repeated cultivation ofMiresistance gene tomato rootstocks under field conditions. Plant Pathology, 58(5), 990-998. doi:10.1111/j.1365-3059.2009.02089.xVerdejo-Lucas, S., Talavera, M., & Andrés, M. F. (2012). Virulence response to the Mi.1 gene of Meloidogyne populations from tomato in greenhouses. Crop Protection, 39, 97-105. doi:10.1016/j.cropro.2012.03.025WHITEHEAD, A. G., & HEMMING, J. R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology, 55(1), 25-38. doi:10.1111/j.1744-7348.1965.tb07864.xYe, D.-Y., Qi, Y.-H., Cao, S.-F., Wei, B.-Q., & Zhang, H.-S. (2017). Histopathology combined with transcriptome analyses reveals the mechanism of resistance to Meloidogyne incognita in Cucumis metuliferus. Journal of Plant Physiology, 212, 115-124. doi:10.1016/j.jplph.2017.02.002Donkers-Venne, D. T. H. M., Fargette, M., & Zijlstra, C. (2000). Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology, 2(8), 847-853. doi:10.1163/15685410075011279
Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy
The nutritional diagnosis of crops is carried out through costly foliar ionomic analysis in laboratories. However, spectroscopy is a sensing technique that could replace these destructive analyses for monitoring nutritional status. This work aimed to develop a calibration model to predict the foliar concentrations of macro and micronutrients in citrus plantations based on rapid non-destructive spectral measurements. To this end, 592 ‘Clementina de Nules’ citrus leaves were collected during several months of growth. In these foliar samples, the spectral absorbance (430–1040 nm) was measured using a portable spectrometer, and the foliar ionomics was determined by emission spectrometry (ICP-OES) for macro and micronutrients, and the Kjeldahl method to quantify N. Models based on partial least squares regression (PLS-R) were calibrated to predict the content of macro and micronutrients in the leaves. The determination coefficients obtained in the model test were between 0.31 and 0.69, the highest values being found for P, K, and B (0.60, 0.63, and 0.69, respectively). Furthermore, the important P, K, and B wavelengths were evaluated using the weighted regression coefficients (BW) obtained from the PLS-R model. The results showed that the selected wavelengths were all in the visible region (430–750 nm) related to foliage pigments. The results indicate that this technique is promising for rapid and non-destructive foliar macro and micronutrient prediction
10. DIAGNÓSTICO DE LA IMPLEMENTACIÓN DE LA NORMA NIIF (NIC 41) EN LAS EMPRESAS GANADERAS DEDICADAS A LA CRÍA DE GANADO BOVINO EN LA REGIÓN DEL BAJO CAUCA ANTIOQUEÑO
El establecimiento de las Normas Internacionales de Información Financiera (NIIF) y la NIC 41 ( Norma Internacional de Contabilidad) en la ley 1314 de 2009, busca determinar la convergencia de los principios y normas de contabilidad e información financiera hacia los estándares internacionales, permitiendo la identificación y reconocimiento de los activos biológicos; por este motivo el grupo de investigación HUTIN (Huellas Tecnológicas de Investigación), desarrolló un proyecto en el cual se diagnosticó las empresas del sector ganadero dedicadas a la cría de ganado bovino de la región del Bajo Cauca Antioqueño implementen esta norma, ya que posibilita el reconocimiento económico de los activos biológicos, valor razonable y deducción de costos que son representativos en los estados financieros. Esto se logró a través de encuestas realizadas a empresas de la subregión del Bajo Cauca Antioqueño dedicadas a la cría de ganado bovino, obteniendo la información necesaria para documentar el proceso y obtener un estándar para ser implementado en el sector siendo una herramienta eficaz para alcanzar mercados globalizados y competitivos. Se percibe un bajo nivel en las empresas ganaderas sobre el proceso de implementación de la NIIF (NIC 41). La implementación de esta norma le permite al empresario del sector ganadero identificar el estado actual de sus activos biológicos e inventarios y poder deducirse costos significativos en el proceso productivo, contando con una información económica, contable y financiera fundamentales en la toma de decisiones
Evaluation of ATM Kinase Inhibitor KU-55933 as Potential Anti-Toxoplasma gondii Agent
Toxoplasma gondii is an apicomplexan protozoan parasite with a complex life cycle composed of multiple stages that infect mammals and birds. Tachyzoites rapidly replicate within host cells to produce acute infection during which the parasite disseminates to tissues and organs. Highly replicative cells are subject to Double Strand Breaks (DSBs) by replication fork collapse and ATM, a member of the phosphatidylinositol 3-kinase (PI3K) family, is a key factor that initiates DNA repair and activates cell cycle checkpoints. Here we demonstrate that the treatment of intracellular tachyzoites with the PI3K inhibitor caffeine or ATM kinase-inhibitor KU-55933 affects parasite replication rate in a dose-dependent manner. KU-55933 affects intracellular tachyzoite growth and induces G1-phase arrest. Addition of KU-55933 to extracellular tachyzoites also leads to a significant reduction of tachyzoite replication upon infection of host cells. ATM kinase phosphorylates H2A.X (γH2AX) to promote DSB damage repair. The level of γH2AX increases in tachyzoites treated with camptothecin (CPT), a drug that generates fork collapse, but this increase was not observed when co-administered with KU-55933. These findings support that KU-55933 is affecting the Toxoplasma ATM-like kinase (TgATM). The combination of KU-55933 and other DNA damaging agents such as methyl methane sulfonate (MMS) and CPT produce a synergic effect, suggesting that TgATM kinase inhibition sensitizes the parasite to damaged DNA. By contrast, hydroxyurea (HU) did not further inhibit tachyzoite replication when combined with KU-55933
- …