2,892 research outputs found
Smoothed Dissipative Particle Dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly
nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel
multiphase smoothed dissipative particle dynamics model. This model accounts
for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface
tension is modeled by imposing a pairwise force between SDPD particles. We show
that the relationship between the model parameters and surface tension,
previously derived under the assumption of zero thermal fluctuation, is
accurate for fluid systems at low temperature but overestimates the surface
tension for intermediate and large thermal fluctuations. To analyze the effect
of thermal fluctuations on surface tension, we construct a coarse-grained Euler
lattice model based on the mean field theory and derive a semi-analytical
formula to directly relate the surface tension to model parameters for a wide
range of temperatures and model resolutions. We demonstrate that the present
method correctly models the dynamic processes, such as bubble coalescence and
capillary spectra across the interface
The impact of shocks on the chemistry of molecular clouds: high resolution images of chemical differentiation along the NGC1333-IRAS2A outflow
This paper presents a detailed study of the chemistry in the outflow
associated with the low-mass protostar NGC1333-IRAS2A down to 3" (650 AU)
scales. Millimeter-wavelength aperture-synthesis observations from the OVRO and
BIMA interferometers and (sub)millimeter single-dish observations from the
Onsala 20m telescope and CSO are presented. The interaction of the highly
collimated protostellar outflow with a molecular condensation ~15000 AU from
the central protostar is clearly traced by molecular species such as HCN, SiO,
SO, CS, and CH3OH. Especially SiO traces a narrow high velocity component at
the interface between the outflow and the molecular condensation.
Multi-transition single-dish observations are used to distinguish the chemistry
of the shock from that of the molecular condensation and to address the
physical conditions therein. Statistical equilibrium calculations reveal
temperatures of 20 and 70 K for the quiescent and shocked components,
respectively, and densities near 10^6 cm^{-3}. Significant abundance
enhancements of two to four orders of magnitude are found in the shocked region
for molecules such as CH3OH, SiO and the sulfur-bearing molecules. HCO+ is seen
only in the aftermath of the shock consistent with models where it is destroyed
through release of H2O from grain mantles in the shock. N2H+ shows narrow
lines, not affected by the outflow but rather probing the ambient cloud.
Differences in abundances of HCN, H2CO and CS are seen between different
outflow regions and are suggested to be related to differences in the atomic
carbon abundance. Compared to the warm inner parts of protostellar envelopes,
higher abundances of in particular CH3OH and SiO are found in the outflows,
which may be related to density differences between the regions.Comment: 18 pages, 13 figures. Accepted for publication in A&
The Professional Development Practices of Two Reading First Coaches
To establish job-embedded, ongoing professional development recent policies and initiatives required that districts appoint school-based coaches. The Reading First Initiative, for example, created an immediate need for coaches without a clear definition of coaches’ responsibilities. Therefore, the purpose of this case study was to investigate how two Reading First coaches interpreted and enacted their professional development responsibilities. Cross-case analyses identified similarities and differences in coaches’ enactments. Findings revealed that while each coach engaged in similar professional development responsibilities (e.g. modeling, observing, and classroom walkthroughs) their approach to these responsibilities differed — collaborative versus expert driven. These differences in approaches indicate that the preparation for coaches should include development of knowledge about how teachers learn and methods and strategies for developing and implementing effective professional development within schools
3-D Tracking and Visualization of Hundreds of Pt-Co Fuel Cell Nanocatalysts During Electrochemical Aging
We present an electron tomography method that allows for the identification
of hundreds of electrocatalyst nanoparticles with one-to-one correspondence
before and after electrochemical aging. This method allows us to track, in
three-dimensions (3-D), the trajectories and morphologies of each Pt-Co
nanocatalyst on a fuel cell carbon support. The use of atomic-scale electron
energy loss spectroscopic imaging enables the correlation of performance
degradation of the catalyst with changes in particle/inter-particle
morphologies, particle-support interactions and the near-surface chemical
composition. We found that, aging of the catalysts under normal fuel cell
operating conditions (potential scans from +0.6 V to +1.0 V for 30,000 cycles)
gives rise to coarsening of the nanoparticles, mainly through coalescence,
which in turn leads to the loss of performance. The observed coalescence events
were found to be the result of nanoparticle migration on the carbon support
during potential cycling. This method provides detailed insights into how
nanocatalyst degradation occurs in proton exchange membrane fuel cells
(PEMFCs), and suggests that minimization of particle movement can potentially
slow down the coarsening of the particles, and the corresponding performance
degradation.Comment: Nano Letters, accepte
Simian immunodeficiency virus infection in wild-caught chimpanzees from Cameroon
Simian immunodeficiency viruses (SIVcpz) infecting chimpanzees (Pan troglodytes) in west central Africa are the closest relatives to all major variants of human immunodeficiency virus type 1 ([HIV-1]; groups M, N and O), and have thus been implicated as the source of the human infections; however, information concerning the prevalence, geographic distribution, and subspecies association of SIVcpz still remains limited. In this study, we tested 71 wild-caught chimpanzees from Cameroon for evidence of SIVcpz infection. Thirty-nine of these were of the central subspecies (Pan troglodytes troglodytes), and 32 were of the Nigerian subspecies (Pan troglodytes vellerosus), as determined by mitochondrial DNA analysis. Serological analysis determined that one P. t. troglodytes ape (CAM13) harbored serum antibodies that cross-reacted strongly with HIV-1 antigens; all other apes were seronegative. To characterize the newly identified virus, 14 partially overlapping viral fragments were amplified from fecal virion RNA and concatenated to yield a complete SIVcpz genome (9,284 bp). Phylogenetic analyses revealed that SIVcpzCAM13 fell well within the radiation of the SIVcpzPtt group of viruses, as part of a clade including all other SIVcpzPtt strains as well as HIV-1 groups M and N. However, SIVcpzCAM13 clustered most closely with SIVcpzGAB1 from Gabon rather than with SIVcpzCAM3 and SIVcpzCAM5 from Cameroon, indicating the existence of divergent SIVcpzPtt lineages within the same geographic region. These data, together with evidence of recombination among ancestral SIVcpzPtt lineages, indicate long-standing endemic infection of central chimpanzees and reaffirm a west central African origin of HIV-1. Whether P. t. vellerosus apes are naturally infected with SIVcpz requires further study
Vienna Circle and Logical Analysis of Relativity Theory
In this paper we present some of our school's results in the area of building
up relativity theory (RT) as a hierarchy of theories in the sense of logic. We
use plain first-order logic (FOL) as in the foundation of mathematics (FOM) and
we build on experience gained in FOM.
The main aims of our school are the following: We want to base the theory on
simple, unambiguous axioms with clear meanings. It should be absolutely
understandable for any reader what the axioms say and the reader can decide
about each axiom whether he likes it. The theory should be built up from these
axioms in a straightforward, logical manner. We want to provide an analysis of
the logical structure of the theory. We investigate which axioms are needed for
which predictions of RT. We want to make RT more transparent logically, easier
to understand, easier to change, modular, and easier to teach. We want to
obtain deeper understanding of RT.
Our work can be considered as a case-study showing that the Vienna Circle's
(VC) approach to doing science is workable and fruitful when performed with
using the insights and tools of mathematical logic acquired since its formation
years at the very time of the VC activity. We think that logical positivism was
based on the insight and anticipation of what mathematical logic is capable
when elaborated to some depth. Logical positivism, in great part represented by
VC, influenced and took part in the birth of modern mathematical logic. The
members of VC were brave forerunners and pioneers.Comment: 25 pages, 1 firgure
Metacognitive Awareness of Facial Affect in Higher-Functioning Children and Adolescents with Autism Spectrum Disorder
Higher-functioning participants with and without autism spectrum disorder (ASD) viewed a series of face stimuli, made decisions regarding the affect of each face, and indicated their confidence in each decision. Confidence significantly predicted accuracy across all participants, but this relation was stronger for participants with typical development than participants with ASD. In the hierarchical linear modeling analysis, there were no differences in face processing accuracy between participants with and without ASD, but participants with ASD were more confident in their decisions. These results suggest that individuals with ASD have metacognitive impairments and are overconfident in face processing. Additionally, greater metacognitive awareness was predictive of better face processing accuracy, suggesting that metacognition may be a pivotal skill to teach in interventions
Epitaxy of hexagonal ABO quantum materials
Hexagonal O oxides (, = cation) are a rich materials class for
realizing novel quantum phenomena. Their hexagonal symmetry, oxygen trigonal
bipyramid coordination and quasi-two dimensional layering give rise to
properties distinct from those of the cubic O perovskites. As bulk
materials, most of the focus in this materials class has been on the rare earth
manganites, MnO ( = rare earth); these materials display coupled
ferroelectricity and antiferromagnetic order. In this review, we focus on the
thin film manifestations of the hexagonal O oxides. We cover the
stability of the hexagonal oxides and substrates which can be used to template
the hexagonal structure. We show how the thin film geometry not only allows for
further tuning of the bulk-stable manganites but also the realization of
metastable hexagonal oxides such as the FeO that combine
ferroelectricity with weak ferromagnetic order. The thin film geometry is a
promising platform to stabilize additional metastable hexagonal oxides to
search for predicted high-temperature superconductivity and topological phases
in this materials class.Comment: The following article has been accepted by Applied Physics Review
- …