76 research outputs found

    Pathophysiological consequences of receptor mistraffic:Tales from the platelet P2Y12 receptor

    Get PDF
    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y1 and P2Y12), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems

    Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    Get PDF
    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.CM is funded by Medical Research Council Grant No G9826026. AR was funded by a British Heart Foundation Centre of Research Excellence-funded Vacation Studentship. CHC is funded by British Heart Foundation Fellowship FS/11/49/28751.This is the final version of the article. It first appeared from PLOS via https://doi.org/10.1371/journal.pone.016300

    ARF6-Dependent Regulation of P2Y Receptor Traffic and Function in Human Platelets

    Get PDF
    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y1 and P2Y12 purinoceptors. Recently, we demonstrated that P2Y1 and P2Y12 purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y1 and P2Y12 purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y1 or P2Y12 purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function

    Protease-activated receptor 4 variant p.Tyr157Cys reduces platelet functional responses and alters receptor trafficking

    Get PDF
    OBJECTIVE—: Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect on platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. APPROACH AND RESULTS—: We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to affect most on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. CONCLUSIONS—: Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists

    Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR) Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease

    Get PDF
    The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder

    A Study of Platelet Inhibition, Using a 'Point of Care' Platelet Function Test, following Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction [PINPOINT-PPCI].

    Get PDF
    BACKGROUND: Rapid coronary recanalization following ST-elevation myocardial infarction (STEMI) requires effective anti-platelet and anti-thrombotic therapies. This study tested the impact of door to end of procedure ('door-to-end') time and baseline platelet activity on platelet inhibition within 24hours post-STEMI. METHODS AND FINDINGS: 108 patients, treated with prasugrel and procedural bivalirudin, underwent Multiplate® platelet function testing at baseline, 0, 1, 2 and 24hours post-procedure. Major adverse cardiac events (MACE), bleeding and stent thrombosis (ST) were recorded. Baseline ADP activity was high (88.3U [71.8-109.0]), procedural time and consequently bivalirudin infusion duration were short (median door-to-end time 55minutes [40-70] and infusion duration 30minutes [20-42]). Baseline ADP was observed to influence all subsequent measurements of ADP activity, whereas door-to-end time only influenced ADP immediately post-procedure. High residual platelet reactivity (HRPR ADP>46.8U) was observed in 75% of patients immediately post-procedure and persisted in 24% of patients at 2hours. Five patients suffered in-hospital MACE (4.6%). Acute ST occurred in 4 patients, all were <120mins post-procedure and had HRPR. No significant bleeding was observed. In a post-hoc analysis, pre-procedural morphine use was associated with significantly higher ADP activity following intervention. CONCLUSIONS: Baseline platelet function, time to STEMI treatment and opiate use all significantly influence immediate post-procedural platelet activity
    • …
    corecore