1,040 research outputs found

    Gigahertz-Peaked Spectrum Radio Sources in Nearby Galaxies

    Get PDF
    There is now strong evidence that many low-luminosity AGNs (LLAGNs) contain accreting massive black holes and that the nuclear radio emission is dominated by parsec-scale jets launched by these black holes. Here, we present preliminary results on the 1.4 GHz to 667 GHz spectral shape of a well-defined sample of 16 LLAGNs. The LLAGNs have a falling spectrum at high GHz frequencies. Several also show a low-frequency turnover with a peak in the 1-20 GHz range. The results provide further support for jet dominance of the core radio emission. The LLAGNs show intriguing similarities with gigahertz-peaked spectrum (GPS) sources.Comment: 6 pages, to appear in ASP Conference series, 2002, Vol. 25

    Chandra Observations of Arp 220: The Nuclear Source

    Get PDF
    We present the first results from 60ks of observations of Arp 220 using the ACIS-S instrument on Chandra. We report the detection of several sources near the galaxy's nucleus, including a point source with a hard spectrum that is coincident with the western radio nucleus B. This point source is mildly absorbed (N_H ~ 3 x 10^22 cm^-2) and has an estimated luminosity of 4 x 10^40 erg/s. In addition, a fainter source may coincide with the eastern nucleus A. Extended hard X-ray emission in the vicinity raises the total estimated nuclear 2-10 keV X-ray luminosity to 1.2 x 10^41 erg/s, but we cannot rule out a hidden AGN behind columns exceeding 5 x 10^24 cm^-2. We also detect a peak of soft X-ray emission to the west of the nucleus, and a hard point source 2.5 kpc from the nucleus with a luminosity of 6 x 10^39 erg/s.Comment: Accepted for publication in Ap

    Chandra Observations of Arp 220: The Nuclear Source

    Get PDF
    We present the first results from 60ks of observations of Arp 220 using the ACIS-S instrument on Chandra. We report the detection of several sources near the galaxy's nucleus, including a point source with a hard spectrum that is coincident with the western radio nucleus B. This point source is mildly absorbed (N_H ~ 3 x 10^22 cm^-2) and has an estimated luminosity of 4 x 10^40 erg/s. In addition, a fainter source may coincide with the eastern nucleus A. Extended hard X-ray emission in the vicinity raises the total estimated nuclear 2-10 keV X-ray luminosity to 1.2 x 10^41 erg/s, but we cannot rule out a hidden AGN behind columns exceeding 5 x 10^24 cm^-2. We also detect a peak of soft X-ray emission to the west of the nucleus, and a hard point source 2.5 kpc from the nucleus with a luminosity of 6 x 10^39 erg/s.Comment: Accepted for publication in Ap

    Atomic Hydrogen Properties of AGN Host Galaxies: HI in 16 NUclei of GAlaxies (NUGA) Sources

    Full text link
    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (HI) in 16 nearby spiral galaxies hosting low luminosity AGN, observed with high spectral and spatial resolution (resolution: ~20 arcsec, 5 km/s) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types, ranging from Seyfert to star-forming nuclei and was originally selected for the NUclei of GAlaxies project (NUGA) - a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the HI properties of these galaxies, their environment, their stellar distribution and their AGN type. The large-scale HI morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with AGN type reveals that ring structures are significantly more common in LINER than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed HI disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated HI emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).Comment: 54 pages, 7 figures, accepted for publication in AJ. The full-resolution version is available at http://www.mpia.de/homes/haan/research.htm

    Early GRB Optical and Infrared Afterglow Observations with the 2-m Robotic Liverpool Telescope

    Get PDF
    We present the first optical observations of a Gamma Ray Burst (GRB) afterglow using the 2-m robotic Liverpool Telescope (LT), which is owned and operated by Liverpool John Moores University and situated on La Palma. We briefly discuss the capabilities of LT and its suitability for rapid follow-up observations of early optical and infrared GRB light curves. In particular, the combination of aperture, site, instrumentation and rapid response (robotic over-ride mode aided by telescope's rapid slew and fully-opening enclosure) makes the LT ideal for investigating the nature of short bursts, optically-dark bursts, and GRB blast-wave physics in general. We briefly describe the LT's key position in the RoboNet-1.0 network of robotic telescopes. We present the LT observations of GRB041006 and use its gamma-ray properties to predict the time of the break in optical light curve, a prediction consistent with the observations.Comment: 4 pages, 1 figure, accepted for publication in Il nuovo cimento (4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004

    The Size of the Radio-Emitting Region in Low-luminosity Active Galactic Nuclei

    Full text link
    We have used the VLA to study radio variability among a sample of 18 low luminosity active galactic nuclei (LLAGNs), on time scales of a few hours to 10 days. The goal was to measure or limit the sizes of the LLAGN radio-emitting regions, in order to use the size measurements as input to models of the radio emission mechanisms in LLAGNs. We detect variability on typical time scales of a few days, at a confidence level of 99%, in half of the target galaxies. Either variability that is intrinsic to the radio emitting regions, or that is caused by scintillation in the Galactic interstellar medium, is consistent with the data. For either interpretation, the brightness temperature of the emission is below the inverse-Compton limit for all of our LLAGNs, and has a mean value of about 1E10 K. The variability measurements plus VLBI upper limits imply that the typical angular size of the LLAGN radio cores at 8.5 GHz is 0.2 milliarcseconds, plus or minus a factor of two. The ~ 1E10 K brightness temperature strongly suggests that a population of high-energy nonthermal electrons must be present, in addition to a hypothesized thermal population in an accretion flow, in order to produce the observed radio emission.Comment: 61 pages, 17 figures, 10 tables. Accepted for publication in the Astrophysical Journa

    The Relative Orientation of Nuclear Accretion and Galaxy Stellar Disks in Seyfert Galaxies

    Get PDF
    We use the difference (delta) between the position angles of the nuclear radio emission and the host galaxy major axis to investigate the distribution of the angle (beta) between the axes of the nuclear accretion disk and the host galaxy disk in Seyfert galaxies. We provide a critical appraisal of the quality of all measurements, and find that the data are limited by observational uncertainties and biases, such as the well known deficiency of Seyfert galaxies of high inclination. There is weak evidence that the distribution of delta for Seyfert 2 galaxies may be different (at the 90% confidence level) from a uniform distribution, while the Seyfert 1 delta distribution is not significantly different from a uniform distribution or from the Seyfert 2 delta distribution. The cause of the possible non-uniformity in the distribution of delta for Seyfert 2 galaxies is discussed. Seyfert nuclei in late-type spiral galaxies may favor large values of delta (at the ~96% confidence level), while those in early-type galaxies show a more or less random distribution of delta. This may imply that the nuclear accretion disk in non-interacting late-type spirals tends to align with the stellar disk, while that in early-type galaxies is more randomly oriented, perhaps as a result of accretion following a galaxy merger. We point out that biases in the distribution of inclination translate to biased estimates of beta in the context of the unified scheme. When this effect is taken into account, the distributions of beta for all Seyferts together, and of Seyfert 1's and 2's separately, agree with the hypothesis that the radio jets are randomly oriented with respect to the galaxy disk. The data are consistent with the expectations of the unified scheme, but do not demand it.Comment: To appear in the Astrophysical Journal, Vol 516 #1, May 1, 1999. Corrected figure placement within pape

    Direct measurement of the jet geometry in Seyfert galaxies

    Get PDF
    We demonstrate that, by combining optical, radio and X-ray observations of a Seyfert, it is possible to provide a direct measurement of the angle β\beta between the direction of the radio jet and the normal to the plane of the spiral host galaxy. To do so, we make the assumptions that the inner radio jet is perpendicular to the X-ray observed inner accretion disk, and that the observed jet (or the stronger component, if the jet is two-sided) is physically closer to Earth than the plane of the galaxy. We draw attention to the possibility of measurement producing a result which is not self-consistent, in which case for that galaxy, one of the assumptions must fail.Comment: 11 pages, 1 figure, accepted for publication in The Astrophysical Journal Letter
    corecore