11 research outputs found

    Biochar reinforced PLA composite for fused deposition modelling (FDM): A parametric study on mechanical performance

    No full text
    Rice husk biochar was added to polylactic acid (PLA) to create a biocomposite filament suitable for the extrusion-based 3D printing process of fused deposition modelling (FDM). Taguchi L16 was used for experiment design, and the significance of process parameters was determined using variance analysis (ANOVA). For a 0.3-mm layer thickness, the addition of 5 wt.% biochar resulted in ultimate tensile strength and a modulus of elasticity of 36 MPa and 1103 MPa, respectively. The addition of biochar had a negative influence on flexural strength. The maximum flexural modulus was obtained with 3 % biochar, 100 % infill density, and 0.1 mm layer thickness. Particularly, 1 % biochar resulted in a considerable increase in impact strength, while a subsequent rise in biochar resulted in a decrease, probably due to the agglomeration effect. For 3D printed neat PLA, the average tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength observed were 19 MPa, 550 MPa, 54 MPa, 1981 MPa, and 25 KJ/m2, respectively. Additionally, considering the output of each test, a multicriteria decision-making model, namely, TOPSIS, has been utilized for ranking the mechanical performance. In order to optimise the mechanical properties of three-dimensional printed objects, the study suggests a layer thickness of 0.2 mm, an infill density of 100 %, and raster angle of 0° as the FDM process parameters.Validerad;2023;Nivå 2;2023-10-11 (joosat);CC BY 4.0 License</p

    Basalt fiber hybridization effects on the thermal degradation properties of curauá fiber composites

    No full text
    The use of composite material in engineering application is growing day by day. Researchers have focused on natural fiber composites due to their versatile natures. Present work, the thermal stability of the composites prepared with curauá, basalt and their hybrids into polyester matrix were investigated as a function of hybridization. The composites were prepared by relative percentages of curauá with basalt maintained as 1:1 and length (L) of fibers kept common as 10 mm. Composites were produced through Resin Transfer Molding (RTM) for varying injection and completion pressure. Thermal degradation study was done on a DTGA instrument for temperature ramping. Results reveal that, the onset degradation of pure curauá fiber composite and hybrid composite were due to the cellulose disintegration. The derivative weight curve shows that, incorporation of the basalt fiber sustained the onset degradation to 50 °C due to its inherent thermal resistance nature

    Wear and Friction Analysis of Brake Pad Material Using Natural Hemp Fibers

    No full text
    Non-exhaust brake dust and pollution arising from metal, semi-metal, and ceramic brake pads have made recent research consider their replacement by potential natural fibers such as hemp, flax, sisal, etc. These natural fibers are lightweight, biodegradable, and cheap. This paper discusses the wear and friction analysis of hemp fiber reinforced polymer brake pad material. Three test specimens viz. HF4P20, HF5P20, and HF6P20 were prepared per ASTM G99 standards for the pin-on disc tribo-test. The test trials and validation were done using the Taguchi design of experiments and ANOVA. The optimum result showed a consistent coefficient of friction and lowered specific wear rate for HF6P20 brake pad material. Worn surface morphology was done using scanning electron microscopy

    Testing of Silicon Rubber/Montmorillonite Nanocomposite for Mechanical and Tribological Performance

    No full text
    Nanocomposite made by blending nano-montmorillonite (MMT) and Silicon Rubber (SR) for mechanical and tribological performance is explored in this work. Different configurations of MMT/SR nanocomposite, with 0, 0.5, 2 and 5 wt % of MMT are manufactured by two roll mixing methods. Noticeable improvement in the mechanical and tribological performance is observed, which is also justified by a morphological study of fractured and wear surfaces through SEM. Two percent of MMT loading is found to be the optimum content that shows excellent performance compared to other compositions. The performance improvement can be linked to the good interfacial interaction between the MMT and SR. Statistical modeling through ANOVA is carried out for tribological performance, which reveals the influence of load on the coefficient of friction (COF) and the influence of sliding distance on the wear rate

    Testing of silicon rubber/montmorillonite nanocomposite for mechanical and tribological performance

    No full text
    Nanocomposite made by blending nano-montmorillonite (MMT) and Silicon Rubber (SR) for mechanical and tribological performance is explored in this work. Different configurations of MMT/SR nanocomposite, with 0, 0.5, 2 and 5 wt % of MMT are manufactured by two roll mixing methods. Noticeable improvement in the mechanical and tribological performance is observed, which is also justified by a morphological study of fractured and wear surfaces through SEM. Two percent of MMT loading is found to be the optimum content that shows excellent performance compared to other compositions. The performance improvement can be linked to the good interfacial interaction between the MMT and SR. Statistical modeling through ANOVA is carried out for tribological performance, which reveals the influence of load on the coefficient of friction (COF) and the influence of sliding distance on the wear rate

    The impacts of graphene dosage on the friction and wear performance of a graphene-reinforced silicone rubber nano composite

    No full text
    Lightweight elastomer nanocomposites have several uses in the automotive and aerospace industries. There ought to be no compromises in terms of efficiency, durability, or performance when it comes to new technological products. This results in the ongoing quest for innovative materials. This study contributes to the development of graphene-reinforced silicone rubber by evaluating its mechanical and tribological properties. The two-roll mill mixing process, followed by the moulding step, is utilised in commercial nanocomposites preparation. As a result, the man-made composite can be justified financially. The moulding process was carried out at 170 °C, and the final curing took place at 200 °C for 4 h. Testing is done using filler weight percentages of 0, 1, 3, 5, and 7% graphene to determine the optimal filler weight %. The mechanical performance of silicon rubber was enhanced by over 213% when the graphene weight percentage was increased. With increasing load, the coefficient of friction decreases, with the lowest value found at 3% graphene by weight. The coefficient of friction and the specific wear rate were discovered to vary with sliding speed
    corecore