24 research outputs found

    CMB-HD: an Ultra-Deep, High-Resolution Millimeter-Wave Survey over Half the Sky

    Get PDF
    A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 gigahertz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 microK-arcminutes noise and 15 arcseconds resolution at 150 gigahertz), CMB-HD (Cosmic Microwave Background - Henry Draper catalog entry) will enable major advances. It will allow 1) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k approximately equal to 10 h per megaparsec), which probes dark matter particle properties. It will also allow 2) measurements of the thermal and kinetic Sunyaev-Zeldovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field, which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3) ruling out or detecting any new, light (less than 0.1 electronvolts), thermal particles, which could potentially be the dark matter, and 4) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5) monitor the transient sky by mapping the full observing region every few days, which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6) provide a census of planets, dwarf planets, and asteroids in the outer Solar System, and 7) enable the detection of exo-Oort clouds around other solar systems, shedding light on planet formation. The combination of CMB-HD with contemporary ground and space-based experiments will also provide powerful synergies. CMB-HD will deliver this survey in 5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopes will field about 2.4 million detectors (600,000 pixels) in total. The CMB-HD survey will be made publicly available, with usability and accessibility a priority

    Science from an Ultra-Deep, High-Resolution Millimeter-Wave Survey

    Full text link
    Opening up a new window of millimeter-wave observations that span frequency bands in the range of 30 to 500 GHz, survey half the sky, and are both an order of magnitude deeper (about 0.5 uK-arcmin) and of higher-resolution (about 10 arcseconds) than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. In particular, such a survey would allow for major advances in measuring the distribution of dark matter and gas on small-scales, and yield needed insight on 1.) dark matter particle properties, 2.) the evolution of gas and galaxies, 3.) new light particle species, 4.) the epoch of inflation, and 5.) the census of bodies orbiting in the outer Solar System.Comment: 5 pages + references; Submitted to the Astro2020 call for science white paper

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4

    CMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the Sky

    Get PDF
    A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 GHz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 uK-arcmin noise and 15 arcsecond resolution at 150 GHz), CMB-HD will enable major advances. It will allow 1) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k~10/hMpc), which probes dark matter particle properties. It will also allow 2) measurements of the thermal and kinetic Sunyaev-Zel'dovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field, which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3) ruling out or detecting any new, light (< 0.1eV), thermal particles, which could potentially be the dark matter, and 4) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5) monitor the transient sky by mapping the full observing region every few days, which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6) provide a census of planets, dwarf planets, and asteroids in the outer Solar System, and 7) enable the detection of exo-Oort clouds around other solar systems, shedding light on planet formation. CMB-HD will deliver this survey in 5 years of observing half the sky, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopes will field about 2.4 million detectors (600,000 pixels) in total

    CMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the Sky

    No full text
    A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 GHz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 Karcmin noise and 15 arcsecond resolution at 150 GHz), CMB-HD will enable major advances.It will allow 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k 10 hMpc1), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel'dovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field,which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3.) ruling out or detecting any new, light (< 0:1 eV), thermal particles, which could potentially be the dark matter, and 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5.) monitor the transient sky by mapping the full observing region every few days,which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6.) provide a census of planets, dwarf planets, andasteroids in the outer Solar System, and 7.) enable the detection of exo-Oort clouds around othersolar systems, shedding light on planet formation. The combination of CMB-HD with contemporaryground and space-based experiments will also provide powerful synergies. CMB-HD willdeliver this survey in 5 years of observing 20,000 square degrees, using two new 30-meter-classoff-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopeswill field about 2.4 million detectors (600,000 pixels) in total. The CMB-HD survey willbe made publicly available, with usability and accessibility a priority

    CMB-HD: Astro2020 RFI Response

    No full text
    CMB-HD is a proposed ultra-deep (0.5 uk-arcmin), high-resolution (15 arcseconds) millimeter-wave survey over half the sky that would answer many outstanding questions in both fundamental physics of the Universe and astrophysics. This survey would be delivered in 7.5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors

    CMB-HD: Astro2020 RFI Response

    No full text
    CMB-HD is a proposed ultra-deep (0.5 uk-arcmin), high-resolution (15 arcseconds) millimeter-wave survey over half the sky that would answer many outstanding questions in both fundamental physics of the Universe and astrophysics. This survey would be delivered in 7.5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors

    Snowmass2021 CMB-HD White Paper

    No full text
    CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k~10 h Mpc^(-1)), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel'dovich effects on small scales to map the gas density and velocity, another probe of cosmic structure. In addition, CMB-HD would allow us to cross critical thresholds: 3.) ruling out or detecting any new, light (< 0.1 eV) particles that were in thermal equilibrium with known particles in the early Universe, 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe, and 5.) ruling out or detecting inflationary magnetic fields. CMB-HD would also provide world-leading constraints on 6.) axion-like particles, 7.) cosmic birefringence, 8.) the sum of the neutrino masses, and 9.) the dark energy equation of state. The CMB-HD survey would be delivered in 7.5 years of observing 20,000 square degrees of sky, using two new 30-meter-class off-axis crossed Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors

    Snowmass2021 CMB-HD White Paper

    Get PDF
    CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k~10 h Mpc^(-1)), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel'dovich effects on small scales to map the gas density and velocity, another probe of cosmic structure. In addition, CMB-HD would allow us to cross critical thresholds: 3.) ruling out or detecting any new, light (< 0.1 eV) particles that were in thermal equilibrium with known particles in the early Universe, 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe, and 5.) ruling out or detecting inflationary magnetic fields. CMB-HD would also provide world-leading constraints on 6.) axion-like particles, 7.) cosmic birefringence, 8.) the sum of the neutrino masses, and 9.) the dark energy equation of state. The CMB-HD survey would be delivered in 7.5 years of observing 20,000 square degrees of sky, using two new 30-meter-class off-axis crossed Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors

    Snowmass2021 CMB-HD White Paper

    No full text
    CMB-HD is a proposed millimeter-wave survey over half the sky that would be ultra-deep (0.5 uK-arcmin) and have unprecedented resolution (15 arcseconds at 150 GHz). Such a survey would answer many outstanding questions about the fundamental physics of the Universe. Major advances would be 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k~10 h Mpc^(-1)), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel'dovich effects on small scales to map the gas density and velocity, another probe of cosmic structure. In addition, CMB-HD would allow us to cross critical thresholds: 3.) ruling out or detecting any new, light (< 0.1 eV) particles that were in thermal equilibrium with known particles in the early Universe, 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe, and 5.) ruling out or detecting inflationary magnetic fields. CMB-HD would also provide world-leading constraints on 6.) axion-like particles, 7.) cosmic birefringence, 8.) the sum of the neutrino masses, and 9.) the dark energy equation of state. The CMB-HD survey would be delivered in 7.5 years of observing 20,000 square degrees of sky, using two new 30-meter-class off-axis crossed Dragone telescopes to be located at Cerro Toco in the Atacama Desert. Each telescope would field 800,000 detectors (200,000 pixels), for a total of 1.6 million detectors
    corecore