70 research outputs found
Primary Squamous Cell Carcinoma of the Liver Initially Presenting with Pseudoachalasia
Pseudoachalasia secondary to primary squamous cell carcinoma (SCC) of the liver is extremely rare and has not been reported until now. Here, we report a unique case of primary SCC of the liver initially presenting with progressive dysphagia along with short periods of significant weight loss. A 58-year-old man initially presented with progressive dysphagia along with significant weight loss over brief periods of time. The radiographic and manometric findings were consistent with achalasia. Subsequent esophagogastroduodenoscopy revealed a moderately dilated esophagus without evidence of neoplasm or organic obstruction. However, firm resistance was encountered while traversing the esophagogastric junction (EGJ), although no mucosal lesion was identified. Due to the clinical suspicion of the presence of a malignant tumor, endoscopic ultrasonography (EUS) and computed tomography scans of the chest and abdomen were obtained. A huge hepatic mass with irregular margins extending to the EGJ was found. EUS-guided fine-needle aspiration was performed, and the mass was diagnosed as a primary SCC of the liver by immunohistochemical staining
Defining the Optimal Time of Adaptive Replanning in Prostate Cancer Patients with Weight Change during Volumetric Arc Radiotherapy: A Dosimetric and Mathematical Analysis Using the Gamma Index
We evaluated the changes in the dose distribution of radiation during volumetric arc radiotherapy (VMAT), to determine the right time for adaptive replanning in prostate cancer patients with progressive weight (WT) changes. Five prostate cancer patients treated with VMAT were selected for dosimetric analysis. On the original computed tomography images, nine artificial body contours were created to reflect progressive WT changes. Combined with three different photon energies (6, 10, and 15-MV), 27 comparable virtual VMAT plans were created per patient. The dosimetric analysis included evaluation of target coverage (D95%,Dmax), conformity index, homogeneity index, and organs at risk doses. The dose differences among the plans were determined using the gamma index analysis and were compared with the dosimetric analysis. Mean D95% became lower than 98% when body contour expanded by 2.0 cm or more and Dmax became higher than 107% when body contour contracted by 1.5 cm or more in 10-MV plans. This cut-off values correlated well with gamma index analysis results. Adaptive replanning should, therefore, be considered if the depth of body contour becomes 1.5 cm smaller (WT loss) or 2.0 cm larger (WT gain) in patients treated by VMAT with 10-MV photons
Relationship Between the Extent of Chromosomal Losses and the Pattern of CpG Methylation in Gastric Carcinomas
The extent of unilateral chromosomal losses and the presence of microsatellite instability (MSI) have been classified into high-risk (high- and baseline-level loss) and low-risk (low-level loss and MSI) stem-line genotypes in gastric carcinomas. A unilateral genome-dosage reduction might stimulate compensation mechanism, which maintains the genomic dosage via CpG hypomethylation. A total of 120 tumor sites from 40 gastric carcinomas were examined by chromosomal loss analysis using 40 microsatellite markers on 8 chromosomes and methylation analysis in the 13 CpG (island/non-island) regions near the 10 genes using the bisulfite-modified DNAs. The high-level-loss tumor (four or more losses) showed a tendency toward unmethylation in the Maspin, CAGE, MAGE-A2 and RABGEF1 genes, and the other microsatellite-genotype (three or fewer losses and MSI) toward methylation in the p16, hMLH1, RASSF1A, and Cyclin D2 genes (p<0.05). The non-island CpGs of the p16 and hMLH1 genes were hypomethylated in the high-level-loss and hypermethylated in the non-high-level-loss sites (p<0.05). Consequently, hypomethylation changes were related to a high-level loss, whereas the hypermethylation changes were accompanied by a baseline-level loss, a low-level loss, or a MSI. This indicates that hypomethylation compensates the chromosomal losses in the process of tumor progression
Improvement in the Electrochemical Properties of Lithium Metal by Heat Treatment: Changes in the Chemical Composition of Native and Solid Electrolyte Interphase Films
This study aims to improve the electrochemical properties of lithium metal for application as a negative electrode in high-energy-density batteries. Lithium metal was heat-treated at varying temperatures to modify the native and solid electrolyte interphase (SEI) films, which decreased the interfacial resistance between the lithium electrode and electrolyte, thereby improving the cycling performance. Moreover, the influence of the native and SEI films on lithium metals depended on the heat-treatment temperature. Accordingly, X-ray photoelectron spectroscopy (XPS) was performed to investigate the chemical composition of the native and SEI films on the heat-treated lithium metals before and after immersion in an organic electrolyte solution. The XPS results revealed the high dependence of the chemical composition of the outer layer of the native and SEI films on the heat-treatment temperature, implying that the native and SEI films can be effectively modified by heat treatment
Improvement in the Electrochemical Properties of Lithium Metal by Heat Treatment: Changes in the Chemical Composition of Native and Solid Electrolyte Interphase Films
This study aims to improve the electrochemical properties of lithium metal for application as a negative electrode in high-energy-density batteries. Lithium metal was heat-treated at varying temperatures to modify the native and solid electrolyte interphase (SEI) films, which decreased the interfacial resistance between the lithium electrode and electrolyte, thereby improving the cycling performance. Moreover, the influence of the native and SEI films on lithium metals depended on the heat-treatment temperature. Accordingly, X-ray photoelectron spectroscopy (XPS) was performed to investigate the chemical composition of the native and SEI films on the heat-treated lithium metals before and after immersion in an organic electrolyte solution. The XPS results revealed the high dependence of the chemical composition of the outer layer of the native and SEI films on the heat-treatment temperature, implying that the native and SEI films can be effectively modified by heat treatment
Cellular and Molecular Level Mechanisms against Electrochemical Cancer Therapy
Electrochemical treatment (ECT) is a promising new way to induce tumor regression by flowing direct current into the cancer tissue. ECT was applied to different kinds of tumors in clinical studies and showed good results. In addition, basic research has almost not been done in the field of evaluation of efficacy, dose-response, and cytotoxicity. Therefore, the objective is to study the cellular mechanism in the antitumor effect of ECT and to contribute data of basic research of ECT. In the cell-level study, tumor cells (Sarcoma-180, Scc-7, Ehrlich Carcinoma) were studied using ICR mice and C3H mice. In the study group, pH values of control, 10mA × 150secs, 10mA × 300secs, and 10mA × 600secs groups were measured five times each. In histological level studies, ECT was performed on tumors inoculated on the upper part of the right foot of C3H mice. In each group, mice were sacrificed by cervical dislocation 6, 12, and 24 hrs after ECT treatment, and tumors were removed. The excised tumor was fixed in tissue with 10% formalin, and HE staining and apoptosis antibody staining were carried out from the obtained tissue section and observation. In the study at the cellular level, statistically significant differences were observed in all ECT groups in Sarcoma in the tumor growth measurement study compared with the control group. Statistically significant differences were also observed in Scc-7 in all ECT groups compared to the control group. In the intratumoral pH measurement study, there was a statistically significant difference between the anode and the cathode in each group compared to the control group. In the examination at the histological level, microscopic observation of a slide stained with apoptosis antibody with a magnification of 400 times showed that 6hrs after ECT it was stronger and then decreased. By performing ECT, a weak current flows in the living body. As a result, changes in tissue pH, generation of gas, etc. occur. In this study, it was also confirmed that the intratumor pH value becomes strongly acidic on the anode side and strongly alkaline on the cathode side. In addition, this study confirmed the occurrence of gas during treatment of ECT. Changes in the pH and the like cause changes in the environment in the cell, denaturation of proteins, apoptosis, and necrosis. In this study, a significant increase in apoptosis was confirmed in each ECT group compared to the control group. Treatment effects by ECT were also observed in tumor growth measurement studies and tumor weight measurement studies. From these research results, ECT is considered to be effective as a tumor treatment method
- …