1,256 research outputs found
Direct Observation of High-Temperature Polaronic Behavior In Colossal Magnetoresistive Manganites
The temperature dependence of the electronic and atomic structure of the
colossal magnetoresistive oxides (x = 0.3, 0.4) has
been studied using core and valence level photoemission, x-ray absorption and
emission, and extended x-ray absorption fine structure spectroscopy. A dramatic
and reversible change of the electronic structure is observed on crossing the
Curie temperature, including charge localization and spin moment increase of
Mn, together with Jahn-Teller distortions, both signatures of polaron
formation. Our data are also consistent with a phase-separation scenario.Comment: 5 pages, 4 figures, revte
Thermal expansion, heat capacity and magnetostriction of RAl (R = Tm, Yb, Lu) single crystals
We present thermal expansion and longitudinal magnetostriction data for cubic
RAl3 (R = Tm, Yb, Lu) single crystals. The thermal expansion coefficient for
YbAl3 is consistent with an intermediate valence of the Yb ion, whereas the
data for TmAl3 show crystal electric field contributions and have strong
magnetic field dependencies. de Haas-van Alphen-like oscillations were observed
in the magnetostriction data of YbAl3 and LuAl3, several new extreme orbits
were measured and their effective masses were estimated. Zero and 140 kOe
specific heat data taken on both LuAl3 and TmAl3 for T < 200 K allow for the
determination of a CEF splitting scheme for TmAl3
Scale-invariant magnetic anisotropy in RuCl at high magnetic fields
In RuCl, inelastic neutron scattering and Raman spectroscopy reveal a
continuum of non-spin-wave excitations that persists to high temperature,
suggesting the presence of a spin liquid state on a honeycomb lattice. In the
context of the Kitaev model, magnetic fields introduce finite interactions
between the elementary excitations, and thus the effects of high magnetic
fields - comparable to the spin exchange energy scale - must be explored. Here
we report measurements of the magnetotropic coefficient - the second derivative
of the free energy with respect to magnetic field orientation - over a wide
range of magnetic fields and temperatures. We find that magnetic field and
temperature compete to determine the magnetic response in a way that is
independent of the large intrinsic exchange interaction energy. This emergent
scale-invariant magnetic anisotropy provides evidence for a high degree of
exchange frustration that favors the formation of a spin liquid state in
RuCl.Comment: arXiv admin note: substantial text overlap with arXiv:1901.09245.
Nature Physic
AC-induced superfluidity
We argue that a system of ultracold bosonic atoms in a tilted optical lattice
can become superfluid in response to resonant AC forcing. Among others, this
allows one to prepare a Bose-Einstein condensate in a state associated with a
negative effective mass. Our reasoning is backed by both exact numerical
simulations for systems consisting of few particles, and by a theoretical
approach based on Floquet-Fock states.Comment: Accepted for publication in Europhysics letters, 6 pages, 4 figures,
Changes in v2: reference 7 replaced by a more recent on
Thermal expansion and magnetostriction of pure and doped RAgSb2 (R = Y, Sm, La) single crystals
Data on temperature-dependent, anisotropic thermal expansion in pure and
doped RAgSb2 (R = Y, Sm, La) single crystals are presented. Using the Ehrenfest
relation and heat capacity measurements, uniaxial pressure derivatives for long
range magnetic ordering and charge density wave transition temperatures are
evaluated and compared with the results of the direct measurements under
hydrostatic pressure. In-plane and c-axis pressure have opposite effect on the
phase transitions in these materials, with in-plane effects being significantly
weaker. Quantum oscillations in magnetostriction were observed for the three
pure compounds, with the possible detection of new frequencies in SmAgSb2 and
LaAgSb2. The uniaxial (along the c-axis) pressure derivatives of the dominant
extreme orbits (beta) were evaluated for YAgSb2 and LaAgSb2
Critical change in the Fermi surface of iron arsenic superconductors at the onset of superconductivity
The phase diagram of a correlated material is the result of a complex
interplay between several degrees of freedom, providing a map of the material's
behavior. One can understand (and ultimately control) the material's ground
state by associating features and regions of the phase diagram, with specific
physical events or underlying quantum mechanical properties. The phase diagram
of the newly discovered iron arsenic high temperature superconductors is
particularly rich and interesting. In the AE(Fe1-xTx)2As2 class (AE being Ca,
Sr, Ba, T being transition metals), the simultaneous structural/magnetic phase
transition that occurs at elevated temperature in the undoped material, splits
and is suppressed by carrier doping, the suppression being complete around
optimal doping. A dome of superconductivity exists with apparent equal ease in
the orthorhombic / antiferromagnetic (AFM) state as well as in the tetragonal
state with no long range magnetic order. The question then is what determines
the critical doping at which superconductivity emerges, if the AFM order is
fully suppressed only at higher doping values. Here we report evidence from
angle resolved photoemission spectroscopy (ARPES) that critical changes in the
Fermi surface (FS) occur at the doping level that marks the onset of
superconductivity. The presence of the AFM order leads to a reconstruction of
the electronic structure, most significantly the appearance of the small hole
pockets at the Fermi level. These hole pockets vanish, i. e. undergo a Lifshitz
transition, at the onset of superconductivity. Superconductivity and magnetism
are competing states in the iron arsenic superconductors. In the presence of
the hole pockets superconductivity is fully suppressed, while in their absence
the two states can coexist.Comment: Updated version accepted in Nature Physic
Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2
We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure
conditions and analyzed the microstructure and pinning properties. The lattice
constants and the Laue pattern of the crystals from X-ray micro-diffraction
showed the crystal symmetry of MgB2. A thorough crystallographic mapping within
a single crystal showed that the edge and c-axis of hexagonal-disc shape
exactly matched the (10-10) and the (0001) directions of the MgB2 phase. Thus,
these well-shaped single crystals may be the best candidates for studying the
direction dependences of the physical properties. The magnetization curve and
the magnetic hysteresis for these single crystals showed the existence of a
wide reversible region and weak pinning properties, which supported our single
crystals being very clean.Comment: 5 pages, 3 figures. submitted to Phys. Rev.
- …