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Abstract. Data on temperature-dependent, anisotropic thermal expansion in pure

and doped RAgSb2 (R = Y, Sm, La) single crystals are presented. Using the Ehrenfest

relation and heat capacity measurements, uniaxial pressure derivatives for long range

magnetic ordering and charge density wave transition temperatures are evaluated and

compared with the results of the direct measurements under hydrostatic pressure.

In-plane and c-axis pressure have opposite effect on the phase transitions in these

materials, with in-plane effects being significantly weaker. Quantum oscillations in

magnetostriction were observed for the three pure compounds, with the possible

detection of new frequencies in SmAgSb2 and LaAgSb2. The uniaxial (along the c-axis)

pressure derivatives of the dominant extreme orbits (β) were evaluated for YAgSb2 and

LaAgSb2.
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1. Introduction

The RAgSb2 series of compounds crystallizes in a simple tetragonal ZrCuSi2-type

structure (P4/nmm, No. 129) [1, 2]. Members of the family show rich and

complex electronic and magnetic properties, including charge density wave (CDW)

transitions in LaAgSb2 [3, 4], anisotropic, ferromagnetic, Kondo-lattice behavior in

CeAgSb2 [3, 5, 6, 7, 8] and low temperature, crystalline electric field (CEF) governed

metamagnetism in RAgSb2 compounds with R = heavy rare earth. [3, 9] Recent

increased attention to this family is partially due to the successful growth of high

quality single crystals [3] that are suitable for detailed, anisotropic thermodynamic

and transport measurements as well as for studies of the Fermi surfaces (FS) of these

materials through measurements of quantum oscillations. [8, 10, 11, 12].

In this work we report measurements of anisotropic thermal expansion (TE) and

longitudinal (H‖L‖c) magnetostriction (MS) for pure members of the series: non-

magnetic YAgSb2 and LaAgSb2 and antiferromagnetic (below ∼ 8.6 K SmAgSb2) as well

as two samples in which La is partially substituted with either Ce (Ce0.2La0.8AgSb2) or

Nd (Nd0.25La0.75AgSb2). YAgSb2 behaves as a rather simple, normal metal with no phase

transitions observed at ambient pressure below the room temperature [3]. Temperature-

dependent resistivity and magnetic susceptibility measurements on LaAgSb2 show two

features, a stronger one at T1 ≈ 210 K and more subtle one at T2 ≈ 185 K [3, 4].

The features in resistivity are reminiscent of charge density wave (CDW) transitions.

An X-ray scattering study [4] revealed that indeed both features are the signatures

of CDW orderings, with the one at T1 corresponding to a development of periodic

charge/lattice modulation along the a-axis with the wave vector τ1 ∼ 0.026(2π/a) and

the one at T2 marking an additional CDW ordering along the c-axis with the wave

vector τ2 ∼ 0.16(2π/c). Both CDW orderings were shown to be consistent with the

enhanced nesting in the different parts of the LaAgSb2 Fermi surface [4]. The higher

temperature CDW transition was shown to be very sensitive to pressure and/or rare-

earth-site substitution [13, 14, 15]. In both doped samples the higher temperature charge

density wave transition is suppressed down to ∼ 110 K, additionally, in Ce0.2La0.8AgSb2

single-ion-Kondo-like behavior in the resistivity is observed at low temperatures and a

ferromagnetic transition is detected at ≈ 3.2 K [13, 14]. It should be mentioned that

the pressure derivatives of the higher temperature CDW transition temperatures in the

two doped samples differ by more than a factor of two from each other [14].

Since the anisotropic thermal expansion data in the RAgSb2 family are available

only for CeAgSb2 [16, 17] (data for polycrystalline LaAgSb2 are also presented in

Ref. [16]) we deem it to be desirable, specifically for detailed analysis of the results

similar to one in Ref. [17] to have experimental TE data for a non-magnetic analogue.

Furthermore, anisotropic pressure derivatives of CDW, Curie and Néel transition

temperatures may be estimated by combining heat capacity and anisotropic TE data,

potentially shedding some light on the reason for the variation of the dTCDW/dP for the

different materials under study.
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2. Experimental methods and computational details

Plate-like RAgSb2 crystals were solution grown [18] from Sb-rich self-flux (see Refs.

[3, 9] for further details on growth procedure). Thermal expansion data were obtained

using a capacitive dilatometer constructed of OFHC copper; a detailed description of

the dilatometer is presented elsewhere [19]. The dilatometer was mounted in a Quantum

Design PPMS-14 instrument and was operated over a temperature range of 1.8 to 300 K

in magnetic field up to 140 kOe. The samples were cut and polished so as to have parallel

surfaces perpendicular to the [100] and [001] directions with the distances L between the

surfaces ranging between 0.5−2 mm. Heat capacity of the samples was measured using a

hybrid adiabatic relaxation technique of the heat capacity option in a Quantum Design

PPMS-14. Field dependent magnetization for several samples was measured using a

Quantum Design MPMS-7 SQUID magnetometer. The pressure dependence of the

Néel temperature of SmAgSb2 was measured by following, as a function of pressure, the

sharp feature (caused by loss of spin-disorder scattering at TN ) in the in-plane resistance.

Pressure was generated in a Teflon cup filled with 60:40 mixture of n-pentane and light

mineral oil inserted in a 33 mm outer diameter, non-magnetic, piston-cylinder-type,

Be-Cu pressure cell with a core made of NiCrAl (40 KhNYu-VI) alloy. The pressure

at room temperature was monitored by a manganin, resistive pressure gauge. At low

temperatures the pressure value was determined from the superconducting transition

temperature of pure lead [20]. The temperature environment for the pressure cell was

provided by a PPMS instrument. Near the Néel transition the temperature was changed

at 0.5 K/min rate and stabilized at every measured point (so that the effective rate

was about 0.2 K/min). An additional Cernox sensor, attached to the body of the

cell, served to determine the temperature of the sample for these measurements (the

temperature difference between the PPMS sensor and the sensor on the cell depends

both on the temperature range and on the nominal cooling/warming rate and in our

was ranging between few tenths of a degree at low temperatures and few degrees near

room temperature).

The electronic structure of YAgSb2 was calculated using the atomic sphere

approximation, tight binding linear muffin-tin orbital (TB-LMTO-ASA) method [21,

22] within the local density approximation (LDA) with Barth-Hedin [23] exchange-

correlation at experimental values of the lattice parameters c/a0 = 2.4525 and under

conditions of uniaxial stress c/a+ = c/a0 + ∆ = 2.5015 and uniaxial pressure c/a− =

c/a0 − ∆ = 2.4034 (∆ = 2% of the c/a value). The unit cell volume and the sizes

of the atomic spheres were kept constant in the calculations. A self-consistency of the

potential was obtained using 637 ~k points in the irreducible part of the Brillouin zone.

The Fermi surface was calculated using 18081 ~k points.
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3. Results and discussion

3.1. YAgSb2

The anisotropic thermal expansion of YAgSb2 is shown in Fig. 1. In-plane thermal

expansion is larger than that along the c-axis by factor of ∼ 1.8. The data can

be represented, reasonably well (dashed lines in Fig. 1), within a simple Debye

approximation [24] with a temperature-independent Grüneisen parameter (in many

materials the value of the Grüneisen parameter is approximately 1−2 [25]). The Debye

temperature, ΘD = 215 K, used in this fit is well within the range of the ΘD values

evaluated for other RAgSb2 (R = rare earth) materials [6, 11, 17].

Magnetostriction of YAgSb2 at the base temperature is rather small, |∆L/L0(H)| <

0.5 ·10−6 at 140 kOe for both orientations of the applied magnetic field. When magnetic

field is applied along the c-axis, clear de Haas - van Alphen (dHvA) - like oscillations

of the MS are observed (Fig. 2). These oscillations are observed up to at least 25 K. A

fast Fourier transform (FFT) of these data allows for identification of four frequencies

(Fig. 2a, inset), consistent with those observed in torque and magnetization [10]. The

effective masses corresponding to these frequencies are consistent with those reported

earlier [10]. The occurrence of quantum oscillations in MS is a known phenomenon

[26], however observations of such oscillations are rather rare, since both large, high

quality single crystals and sensitive dilatometers are required. The amplitude of the MS

oscillations along the i-axis, ǫi, can be written as [26]

ǫi = −MH
∂ lnSm

∂σi

where M is the amplitude of the oscillations in magnetization, H is a magnetic field

(we will not distinguish between H and B for the materials studied in this work), Sm is

the extremal cross-sectional area of the Fermi surface perpendicular to the direction of

the applied field and σi is the stress along the i-axis. From the equation above one can

see that the oscillations in MS can be used to study Fermi surfaces of metals on a par

with more traditional quantum oscillations in magnetization and magnetoresistance.

Due to the additional factor, ∂ lnSm/∂σi, the orbits with high sensitivity to stress

have a chance to be resolved easier by magnetostriction measurements (and vice versa,

stress-insensitive orbits can be easily missed). Finally, if the same orbit is detected in

both, magnetization and MS measurements (preferably on the same sample), the stress

derivative of the extremal cross-sectional area of the Fermi surface can be estimated.

Such estimates are potentially very useful since the direct measurement of Fermi surfaces

under uniaxial stress is difficult and rare.

Fig. 3 shows the oscillations corresponding to the β orbit (in notation of Ref.

[10]) as seen by MS and magnetization. Using the equation above, the uniaxial stress

derivative for this orbit is estimated to be ∂ lnSβ/∂σc = −16 · 10−12 cm2/dyne. In

principle, one can obtain the uniaxial stress derivatives of the non-dominant frequencies

by comparing the corresponding FFT amplitudes, in such case care should be taken to
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determine the relative phase of the magnetization and MS oscillations which defines the

sign of the stress derivative.

The calculated Γ−X −M cross-section of the YAgSb2 Fermi surface for different

c/a values is shown in Fig. 4. These calculations are consistent with the previous

publications [10]. Cross-section areas of several Fermi surface sheets, β, γ and δ′,

increase under uniaxial pressure along the c-axis (c/a−) and decrease under uniaxial

stress along the c-axis (c/a+). Qualitatively, the computational results for β orbit

are consistent with the aforementioned experimental data. Quantitative comparison

between the band structure calculations and the experiment requires use of the elastic

constants tensor for YAgSb2 that is not known at this point.

3.2. SmAgSb2

The anisotropic, temperature-dependent thermal expansion of SmAgSb2 is shown in

Fig. 5. Near room temperature the thermal expansion of SmAgSb2 is similar to that

of YAgSb2 (Fig. 1). On cooling, αc(T ) changes sign to negative below ∼ 115 K,

passes through a broad minimum around 50 K and then changes sign again at ∼ 20

K. The behavior of αa(T ) between the room temperature and ∼ 20 K is less dramatic,

although the difference from the αa(T ) behavior in YAgSb2 is clearly seen below ∼ 100

K. These features in the SmAgSb2 are possibly related to the crystalline electric field

(CEF) effects (c.f. with the data of CeAgSb2 [17]). At the same time the volume

thermal expansion β(T ) in the ∼ 20 − 300 K temperature range is similar for both

materials (Figs. 1,5). Clear, λ-shaped, features associated with the long range order

antiferromagnetic transition at TN ≈ 8.7 K [3] are seen in heat capacity and linear

and volume thermal expansion (Fig. 5(b)). The peak in α(T ) is negative for the

measurements along the a-axis and positive along the c-axis, that sums up to a (smaller)

positive peak in volume thermal expansion β(T ), these signs are opposite to the ones

observed at the ferromagnetic transition in CeAgSb2 [17]. The initial uniaxial pressure

derivatives of the second order phase transitions can be estimated using the Ehrenfest

relation [24]:

dTcrit/dpi =
Vm∆αiTcrit

∆CP

where Vm is the molar volume, ∆αi is a change of the linear (i = a, c) or volume

(αV = β) thermal expansion coefficient at the phase transition, and ∆CP is a change of

the specific heat at the phase transition. Using experimental values: Vm = 1.181 · 10−4

m3/mol, TN ≈ 8.7 K, ∆αa ≈ −2.6 · 10−5 K−1, ∆αc ≈ 7.3 · 10−5 K−1, ∆β ≈ 2.3 · 10−5

K−1, and ∆CP ≈ 18.7 J/mol K, we can estimate initial uniaxial and hydrostatic

pressure derivatives of the Néel temperature in SmAgSb2: dTN/dpa ≈ −0.14 K/kbar,

dTN/dpc ≈ 0.4 K/kbar, dTN/dP ≈ 0.13 K/kbar, so the Néel temperature decreases

under uniaxial pressure along the a-axis and increases (with almost factor of three

higher rate) under uniaxial pressure along the c-axis.
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Estimated hydrostatic pressure derivative can be compared with the measured

value. Fig. 6 shows the in-plane resistance of SmAgSb2 as a function of pressure. Room

temperature resistivity decreases under pressure with the derivative, d ln ρ300K/dP ≈

−4 · 10−3 kbar−1 (room temperature value of pressure were used for this estimate, see

e.g. [27] for a discussion of pressure-temperature relation in a piston-cylinder cells).

Similar but factor of ∼ 2 faster decrease of the room temperature resistivity was also

observed for LaAgSb2 [14]. At low temperatures, just above the magnetic transition,

resistivity of SmAgSb2 increases under pressure and at base temperature, 2 K, it is

practically pressure-independent, consistent with the residual resistivity being pressure-

independent in our measurements. The Néel temperature of SmAgSb2 increases with

pressure (Fig. 6, upper left inset). Two criteria were used to determine TN : an onset

of R(T ) and a maximum in dR/dT [28]. The latter criterion gives TN values consistent

with thermodynamic measurements, whereas the former yields slightly higher TN , still

both of them give similar pressure derivatives, dTN/dP = 0.067 ± 0.003 K/kbar and

dTN/dP = 0.064±0.01 K/kbar, for the onset and dR/dT maximum criteria respectively.

The estimate of the dTN/dP from the Ehrenfest relation is consistent with the di-

rect measurements in its sign but gives a value that is almost a factor of two larger than

that measured. However, in terms of absolute amounts this difference is rather small

(< 0.1 K/kbar) and is probably due to the the accumulation of the error bars from all

three measurements.

Quantum oscillations in the longitudinal MS were readily observed for T ≤ 25 K

in SmAgSb2 for H‖[001] (Fig. 7(a)). A FFT spectrum of these oscillations at T = 1.85

K is shown in Fig. 7(b). The spectra is more complex than that of YAgSb2 (Fig.

2) and is in general agreement with the previous works [10, 12]. Several details are

noteworthy: the dominant frequency in the MS oscillations is α, Fα ≈ 0.57 MG, the

γ′ frequency, first reported in Ref. [12], is seen adjacent to the β frequency in the MS

measurements as well. A very small, new, frequency, marked here as ω (Fω ≈ 0.12

MG), appears to be present in the spectrum. Band structure calculations usually are

not reliable in description of such small FS pockets. Detailed experimental studies are

required to unambiguously exclude an artifactitious origin of this frequency. Finally,

our data suggest that the frequency (slightly lower than 3 MG) identified in Ref. [10]

as a third harmonic of β-frequency, is actually an independent orbit, marked here as γ

(Fγ ≈ 2.82 MG). The amplitude of this frequency in MS measurements is almost factor

of two higher than that of β, that makes its initial identification as 3β unlikely [29].

Based on band structure calculations for SmAgSb2 [12] it seems natural to associate

this frequency with the γ external orbit on the band 1 doughnut-shaped part of the

FS. Angular-dependent quantum oscillations measurements are desirable to confirm the

assignment of this frequency. Effective masses for several of the frequencies are shown

in the right inset to Fig. 7(b). The values of m∗/m0 (m0 is a free electron mass) are

between 0.1 and 0.3. The effective mass of the γ-orbit is significantly less than a triple of

the β-orbit effective mass, consistent with our re-identification of the 2.82 MG frequency.
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Qualitatively similar to the observation in Ref. [10], the amplitude of the α oscillations

as a function of temperature has a break at the temperature corresponding to the TN in

SmAgSb2, whereas the phase of these oscillations does not change at TN (Fig. 7(b)), in

contrast to previous findings [10]. Other frequencies were not observed reliably above

TN .

3.3. LaAgSb2

The anisotropic, temperature-dependent thermal expansion of LaAgSb2 is shown in

Fig. 8. Similar to the data for other members of the RAgSb2 family, linear thermal

expansion is anisotropic, αa > αc. Two CDW transitions [3, 4] are clearly seen in

the thermal expansion data: the higher temperature transition manifests itself in both,

αa(T ) and αc(T ), whereas the lower temperature transition can be distinguished only

in αc(T ); both transitions are seen in the volume thermal expansion, β(T ). These two

CDW transitions are also resolved in heat capacity measurements (Fig. 9). We can

use the Ehrenfest relation (see above) to estimate the uniaxial and hydrostatic pressure

derivatives for these two transitions: for higher temperature CDW: dT1/dpa ≈ 1.0

K/kbar, dT1/dpc ≈ −7.2 K/kbar, dT1/dP ≈ −5.4 K/kbar; for lower temperature

CDW: dT2/dpa ≈ 0, dT2/dpc ≈ dT2/dP ≈ −5.9 K/kbar. The directly measured

hydrostatic pressure derivative for the higher temperature CDW, dT1/dP ≈ −4.3

K/kbar [13, 14], is comparable to the one obtained using Ehrenfest relation, there are

no direct measurements of T2 under pressure so far. It is noteworthy that both CDW

transitions are much more sensitive to the uniaxial pressure along c-axis than to that

along the a-axis and (at least for T1) the signs of the uniaxial pressure derivatives are

opposite; additionally, the inferred hydrostatic pressure derivatives are very similar for

both CDW transitions, so that a merging of the two transitions is not expected (at least

at moderate pressures).

Quantum oscillations in longitudinal MS for T ≤ 25 K in LaAgSb2 (H‖[001]) are

shown in Fig. 10(a). The extremal orbits observed in magnetostriction are consistent

with the ones reported previously [10, 11] and are marked on FFT spectrum (Fig. 10(b))

using the convention from Ref. [10]. The FFT peak at ≈ 2.14 MG, labeled ξ, possibly

corresponds to an extremal orbit that was not previously detected (although a very

small peak at a similar frequency can be noticed in a close examination of the FFT

spectrum presented in Ref. [10]). The small amplitude of this peak at base temperature

does not allow for a determination of its effective mass. Extension of the measurements

to lower temperatures is desirable for a clarification of the parameters of this orbit.

Uniaxial stress dependence of the dominant, β, frequency is estimated from

the comparison of magnetization and magnetostriction measurements (Fig. 11) as

∂ lnSβ/∂σc = −13 · 10−12 cm2/dyne, similar to that for β orbit in YAgSb2.
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3.4. La0.8Ce0.2AgSb2 and La0.75Nd0.2AgSb2

The anisotropic, temperature-dependent thermal expansion and temperature-dependent

heat capacity of La0.8Ce0.2AgSb2 are shown in Fig. 12. Both CDW and ferromagnetic

ordering transitions [13, 14] are clearly seen in the thermal expansion data with the

corresponding features in αc(T ) being significantly larger and of opposite sign in com-

parison with the features in αa(T ). Expectedly, apart from the features associated

with the transitions, the overall temperature dependence of the thermal expansion is

an intermediate between the pure LaAgSb2 (see above) and CeAgSb2 [17]. A clear,

λ-shaped, peak in Cp(T ) at low temperatures is associated with the ferromagnetic or-

der (Fig. 12(b), upper left inset). A feature in the heat capacity corresponding to

the CDW transition in this material is practically absent (although it is unambiguous,

albeit small, in temperature-dependent equivalent Debye temperature, ΘD(T ) [30, 31],

see Fig. 12(b), lower right inset). From the Cp(T ) graph (Fig. 12(b), lower right

inset) we can, very roughly, estimate ∆(Cp/T )|CDW ≈ 5 · 10−3 J/mol K2. From the

data in Fig. 12 and the Ehrenfest relation, we can estimate for the ferromagnetic tran-

sition: dTc/dpa ≈ 0.1 K/kbar, dTc/dpc ≈ −0.46 K/kbar, dTc/dP ≈ −0.29 K/kbar;

for CDW: dTCDW/dpa ≈ 0.7 K/kbar, dTCDW/dpc ≈ −6 K/kbar, dTCDW/dP ≈ −5

K/kbar. Directly measured [14] hydrostatic pressure derivatives of La0.8Ce0.2AgSb2 are

dTc/dP ≈ −0.2 K/kbar (close to the above estimate) and dTCDW/dP ≈ −14 K/kbar.

The absolute value of dTCDW/dP obtained from the Ehrenfest relation is significantly

underestimated, probably due to very poor evaluation of ∆(Cp/T )|CDW (Fig. 12(b),

lower right inset), still the existent TE data (keeping in mind that there cannot be

ambiguity in the sign of the ∆(Cp/T )|CDW ) show that TCDW increases in this material

if the uniaxial pressure is applied in the ab plane but decreases for pressure along the

c-axis and the rate of the change in TCDW is ∼ 9 times higher for the pressure along c,

e.g. the response is slightly more anisotropic than for higher temperature CDW in pure

LaAgSb2 (see above).

A similar set of data for La0.75Nd0.2AgSb2 is shown in the two panels of Fig. 13.

This material does not have long range magnetic order (at least above 1.8 K) [13, 14].

Broad, low temperature (around 10 K), anomaly in TE and heat capacity is probably

associated with the crystalline electric field effects. While CDW transition is clearly

seen in TE, similarly to La0.8Ce0.2AgSb2, Cp(T ) data basically have no indication of the

CDW transition, even though a weak feature is present in ΘD(T ) (Fig. 13(b), inset).

Very roughly we can estimate (an upper limit of) ∆(Cp/T )|CDW ≈ 5 · 10−3 J/mol K2.

Then dTCDW/dpa ≈ 2 K/kbar, dTCDW/dpc ≈ −9 K/kbar, dTCDW/dP ≈ −6 K/kbar.

The inferred value of the hydrostatic pressure derivative is very close to the directly

measured dTCDW/dP = −5.7 K/kbar [14]. The changes in αa(T ), αc(T ) and β(T )

for are of the same sign but larger that in La0.8Ce0.2AgSb2 with similar TCDW . The

anisotropy of the uniaxial pressure response in La0.75Nd0.2AgSb2 is somewhat smaller

than that in LaAgSb2 and La0.8Ce0.2AgSb2.
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4. Summary

The linear thermal expansion in all materials studied in this work is anisotropic, with

αa > αc, apart for the region of magnetic phase transitions, when present. Long

range magnetic ordering and CDW transitions present clear anomalies in the thermal

expansion data. Uniaxial pressure derivatives inferred, by using the Ehrenfest relation,

suggest that CDW transition temperatures increase when pressure is applied in the ab

plane and decrease with pressure along the c-axis, the same is true for the ferromagnetic

transition in La0.8Ce0.2AgSb2, whereas the signs of the uniaxial pressure derivatives are

reversed in the case of the antiferromagnetic transition in SmAgSb2. In all cases the

effect of the pressure along the c-axis is significantly stronger than when the pressure is

applied in the ab-plane.

de Haas - van Alphen like quantum oscillations in the longitudinal (H‖L‖[001])

magnetostriction were observed in the three pure compounds, YAgSb2, SmAgSb2, and

LaAgSb2, up to the temperatures as high as 25 K. For the two latter samples new

extremal orbits may have been detected.
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Figure 1. (Color online) Anisotropic, temperature-dependent, linear and volume

thermal expansion of YAgSb2. Dashed lines show Debye fits with ΘD = 215 K.
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Figure 2. Oscillations in longitudinal magnetostriction of YAgSb2 (H‖L‖[001]). (a)

∆L/L0(H) taken at T = 1.8 K. inset - fast Fourier transform of the same data in

∆L/L0(1/H) form, the observed frequencies are labeled in accordance with Ref. [10].

(b) quantum oscillations of magnetostriction at temperatures up to 25 K plotted as a

function of 1/H .
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Figure 3. Quantum oscillations in YAgSb2 (H‖[001], T = 1.8 K as measured by

magnetostriction (upper panel) and magnetization (lower panel).
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Figure 4. (Color online) (a) Γ−X−M cross-section of the Fermi surface of YAgSb2;

(b) enlarged part near X-point; (c) enlarged part near Γ-point. Cross-sections of the

Fermi surface are labeled in agreement with the notation in Ref [10]. Solid (green) line

corresponds to experimental c/a0, dashed (red) to c/a+, dotted (blue) to c/a
−
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Figure 5. (Color online) (a) Anisotropic temperature-dependent linear and volume

thermal expansion of SmAgSb2. (b) Enlarged low temperature part of the graph in

panel (a). Inset to (b) - low temperature heat capacity data.
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Figure 6. (In-plane resistance of SmAgSb2 under hydrostatic pressure (different
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18.6 kbar), the arrow indicates the direction of increasing pressure. Lower right inset:

enlarged low temperature part of the main panel. Upper left inset: Néel temperature

as a function of pressure: circles - from the onset of R(T ), triangles from the maximum

of dR/dT ; dotted lines are linear fits to the data.
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Figure 7. (Color online) Oscillations in longitudinal magnetostriction of SmAgSb2
(H‖L‖[001]). (a) quantum oscillations of magnetostriction at temperatures up to 25 K

plotted as a function of 1/H (non-oscillatory background subtracted); (b)fast Fourier

transform of the T = 1.85 K data in ∆L/L0(1/H) form, see text for labeling of the

observed frequencies. Insets to (b): left - enlarged low-frequency part of the graph;

right - effective masses of several observed frequencies. New frequencies are marked by

red symbols.
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Figure 8. (Color online) Anisotropic temperature-dependent linear and volume

thermal expansion of LaAgSb2. Dotted vertical lines mark two CDW transitions [3, 4].
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Figure 9. Temperature-dependent heat capacity of LaAgSb2. Inset: enlarged part of

the region containing CDW transitions. Arrows mark the transitions.
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Figure 10. (Color online) Oscillations in longitudinal magnetostriction of LaAgSb2
(H‖L‖[001]). (a) quantum oscillations of magnetostriction at temperatures up to 25

K plotted as a function of 1/H ; (b)fast Fourier transform of the T = 1.85 K data

in ∆L/L0(1/H) form, see text for labeling of the observed frequencies. Inset to (b):

enlarged low-frequency part of the graph. New frequency is marked by a red symbol.
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Figure 11. Quantum oscillations in LaAgSb2 (H‖[001], T = 1.85 K as measured by

magnetostriction (upper panel) and magnetization (lower panel).
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Figure 12. (Color online) (a) Anisotropic temperature-dependent linear and volume

thermal expansion of La0.8Ce0.2AgSb2. Dotted vertical line marks the CDW transition.

Inset: enlarged low temperature part of the data. (b) Temperature-dependent heat

capacity of La0.8Ce0.2AgSb2. Upper left inset: enlarged low temperature part of the

graph. Lower right inset: enlarged part of the Cp(T ) graph containing CDW transition

and ΘD(T ) in the same temperature region. Dotted vertical line marks the transition.

Red lines are guides for the eye.
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Figure 13. (Color online) (a) Anisotropic temperature-dependent linear and volume

thermal expansion of La0.75Nd0.25AgSb2. Dotted vertical line marks the CDW

transition. (b) Temperature-dependent heat capacity of La0.8Nd0.25AgSb2. Inset:

enlarged part of the Cp(T ) graph containing CDW transition and ΘD(T ) in the same

temperature region. Dotted vertical line marks the transition. Red lines are guides for

the eye.
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