125 research outputs found

    Assessment of the agronomic productivity and protein content in 16 soybean genotypes

    Get PDF
    Soybean is an important crop worldwide. It can be used for food, seed, fuel, vegetable oil, soy milk and is capable of biological nitrogen fixation. In Malawi, yields are generally low (400-1000 Kg/hectare) as opposed to a potential of 4,000 Kg per hectare. Farmers grow varieties of which no protein content is known. An experiment was carried out in Malawi to assess the productivity and protein content of 16 different soybean genotypes. The genotypes included the newly released ones: TG X 1830-20E, UG-5 and TG X 1908-8Fand those released earlier: Magoye, Nasoko, Makwacha, Ocepala-4, TGX 1937-1F, TG X 1954-1F, TGX 1485-1D, TGX 1019-2EB, TGX 1835-10E, TGX 1440-1E, TGX 1904-6F, TGX 1910-13F, TGX 1910-14F. These genotypes were grown in plots of 5 meters by 4 meters each. The data was collected by field observations and lab experiments. The results showed that there was a significant genotypic improvement in some newly released varieties in terms of yield and other yield components. High grain yield and high number of branches per plant, number of pods per plant, podding height, harvest index, biological yield, dry matter content and 100 seeds weight were observed in the varieties TG X 1830-20E and UG-5. There was a significant difference (p<0.05) in yield per hectare and in protein content among the sixteen genotypes. Higher protein content was obtained in TGX 1830-20E, UG-5 and TG X 1908-8F than in the earlier approved ones. Among the genotypes, TGX 1830-20E, UG-5 and TGX 1908-8F were the most productive. The results showed that genotypes such as TGX 1485-1D had more protein content than those already released genotypes. The lowest protein content of 27.1% was found in Nasoko. Most of the newly released genotypes had the protein content ranging from 36% to 43%. The results on the newly released varieties have shown that genetic improvement in yield and protein content are possible through deliberate effort in plant breeding and so farmers can selectively grow varieties with the desired traits either for protein production or for non-protein (protein food) production. In addition, food producing industries can easily choose varieties based on the type of food product to be produced. The information should also help Researchers to know which varieties to be used when producing new varieties looking at specific traits whether yield traits or protein content.Keywords: Soybean, genotype, productivity, protein content, traits, selection, variety, yiel

    Evidence to support climate change adaptation in Lesotho, Malawi and Swaziland

    Get PDF
    In Lesotho, Malawi and Swaziland, moderately vulnerable households are likely to become highly vulnerable with changes in climate. The project aims to generate scientific understanding of localized climate scenarios in the three countries; integrate localized climate scenarios with crop growth and adaptation models; provide district-wide household vulnerability information; and determine the socio-economic feasibility of cropping options. Evidence-based policy implications are derived from the study; for instance, the importance of institutional systems that can disseminate timely climate information to smallholders, including informed planting dates

    Improving validity of informed consent for biomedical research in Zambia using a laboratory exposure intervention.

    Get PDF
    BACKGROUND: Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. METHODS: Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. RESULTS: Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. CONCLUSION: Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention

    Post-mortem examination of Hospital Inpatient COVID-19 Deaths in Lusaka, Zambia - A Descriptive Whole-body Autopsy Series

    Get PDF
    BACKGROUND: Since information on the pathology of COVID-19 from sub-Saharan Africa (SSA) remains scarce, the objective of our study was to define the gross pathology and histological features of COVID-19. We report data from 29 whole-body autopsies of COVID-19 deaths occurring in hospitals in Lusaka, Zambia - the first large autopsy case series from Africa. METHODS: We performed a descriptive post-mortem examination study of inpatient COVID-19 related deaths at two hospitals in Lusaka, Zambia. Whole-body autopsies were conducted according to Standard Operating Procedures. Gross and histopathological examinations of all organs were performed. Patient demographics, history, co-morbidities, autopsy gross and microscopic findings, and cause(s) of death were recorded and analyzed using STATA version 14. Variables were grouped and presented as frequencies and percentages. FINDINGS: Autopsies were performed on 29 decedents (mean age = 44 ± 15.8years; age range = 19-82; 17/29 [58.8%] males). 22/29 [75.9%] cases were <55 years of age. A spectrum of pathological manifestations of COVID-19 were seen in all organs. The commonest causes of death were pulmonary thromboembolism (13/29, 45%), Diffuse Alveolar Damage (9/29, 31%), and COVID-19 pneumonia (7/29, 25%). 22/29 (76%) had co-morbidities. Common co-morbidities included HIV (8/29, 28%), Hypertension (6/29, 20%) Tuberculosis (3/29, 10%), Diabetes (3/29, 10%). CONCLUSIONS: A spectrum of gross anatomical and histopathological findings are seen in COVID-19 deaths in hospitalized decedents. These appear broadly similar to those reported from China, Europe and USA. Differences include a younger age group, and co-morbidities of HIV and TB co-infection which require further investigation

    Assessment of animal African trypanosomiasis (AAT) vulnerability in cattle-owning communities of sub-Saharan Africa

    Get PDF
    Background: Animal African trypanosomiasis (AAT) is one of the biggest constraints to livestock production and a threat to food security in sub-Saharan Africa. In order to optimise the allocation of resources for AAT control, decision makers need to target geographic areas where control programmes are most likely to be successful and sustainable and select control methods that will maximise the benefits obtained from resources invested. Methods: The overall approach to classifying cattle-owning communities in terms of AAT vulnerability was based on the selection of key variables collected through field surveys in five sub-Saharan Africa countries followed by a formal Multiple Correspondence Analysis (MCA) to identify factors explaining the variations between areas. To categorise the communities in terms of AAT vulnerability profiles, Hierarchical Cluster Analysis (HCA) was performed. Results: Three clusters of community vulnerability profiles were identified based on farmers’ beliefs with respect to trypanosomiasis control within the five countries studied. Cluster 1 communities, mainly identified in Cameroon, reported constant AAT burden, had large trypanosensitive (average herd size = 57) communal grazing cattle herds. Livestock (cattle and small ruminants) were reportedly the primary source of income in the majority of these cattle-owning households (87.0 %). Cluster 2 communities identified mainly in Burkina Faso and Zambia, with some Ethiopian communities had moderate herd sizes (average = 16) and some trypanotolerant breeds (31.7 %) practicing communal grazing. In these communities there were some concerns regarding the development of trypanocide resistance. Crops were the primary income source while communities in this cluster incurred some financial losses due to diminished draft power. The third cluster contained mainly Ugandan and Ethiopian communities which were mixed farmers with smaller herd sizes (average = 8). The costs spent diagnosing and treating AAT were moderate here. Conclusions: Understanding how cattle-owners are affected by AAT and their efforts to manage the disease is critical to the design of suitable locally-adapted control programmes. It is expected that the results could inform priority setting and the development of tailored recommendations for AAT control strategies

    Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness.

    Get PDF
    BACKGROUND: Post-therapeutic follow-up is essential to confirm cure and to detect early treatment failures in patients affected by sleeping sickness (HAT). Current methods, based on finding of parasites in blood and cerebrospinal fluid (CSF) and counting of white blood cells (WBC) in CSF, are imperfect. New markers for treatment outcome evaluation are needed. We hypothesized that alternative CSF markers, able to diagnose the meningo-encephalitic stage of the disease, could also be useful for the evaluation of treatment outcome. METHODOLOGY/PRINCIPAL FINDINGS: Cerebrospinal fluid from patients affected by Trypanosoma brucei gambiense HAT and followed for two years after treatment was investigated. The population comprised stage 2 (S2) patients either cured or experiencing treatment failure during the follow-up. IgM, neopterin, B2MG, MMP-9, ICAM-1, VCAM-1, CXCL10 and CXCL13 were first screened on a small number of HAT patients (n = 97). Neopterin and CXCL13 showed the highest accuracy in discriminating between S2 cured and S2 relapsed patients (AUC 99% and 94%, respectively). When verified on a larger cohort (n = 242), neopterin resulted to be the most efficient predictor of outcome. High levels of this molecule before treatment were already associated with an increased risk of treatment failure. At six months after treatment, neopterin discriminated between cured and relapsed S2 patients with 87% specificity and 92% sensitivity, showing a higher accuracy than white blood cell numbers. CONCLUSIONS/SIGNIFICANCE: In the present study, neopterin was highlighted as a useful marker for the evaluation of the post-therapeutic outcome in patients suffering from sleeping sickness. Detectable levels of this marker in the CSF have the potential to shorten the follow-up for HAT patients to six months after the end of the treatment

    Isolation of Trypanosoma brucei gambiense from Cured and Relapsed Sleeping Sickness Patients and Adaptation to Laboratory Mice

    Get PDF
    Human African trypanosomiasis, or sleeping sickness, is still a major public health problem in central Africa. Melarsoprol is widely used for treatment of patients where the parasite has already reached the brain. In some regions in Angola, Sudan, Uganda and Democratic Republic of the Congo, up to half of the patients cannot be cured with melarsoprol. From previous investigations it is not yet clear what causes these high relapse rates. Therefore we aimed to establish a parasite collection isolated from cured as well as relapsed patients for downstream comparative drug sensitivity profiling. From 360 sleeping sickness patients, blood and cerebrospinal fluid (CSF) was collected before treatment and along the prescribed 24 months follow-up. Blood and CSF were inoculated in thicket rats (Grammomys surdaster), Natal multimammate mice (Mastomys natalensis) and immunodeficient laboratory mice (Mus musculus). Thus, we established a unique collection of Trypanosoma brucei gambiense type I parasites, isolated in the same disease focus and within a limited period, including 12 matched strains isolated from the same patient before treatment and after relapse. This collection is now available for genotypic and phenotypic characterisation to investigate the mechanism behind abnormally high treatment failure rates in Mbuji-Mayi, Democratic Republic of the Congo
    • …
    corecore