3,807 research outputs found

    Strongly driven quantum pendulum of the OCS molecule

    Full text link
    We demonstrate and analyze a strongly driven quantum pendulum in the angular motion of stateselected and laser aligned OCS molecules. Raman-couplings during the rising edge of a 50-picosecond laser pulse create a wave packet of pendular states, which propagates in the confining potential formed by the polarizability interaction between the molecule and the laser field. This wave-packet dynamics manifests itself as pronounced oscillations in the degree of alignment with a laser-intensity dependent period.Comment: 6 pages, 4 figure

    Petrogenesis of diachronous mixed siliciclastic-carbonate megafacies in the cool-water Oligocene Tikorangi Formation, Taranaki Basin, New Zealand

    Get PDF
    The Oligocene (Whaingaroan-Waitakian) Tikorangi Formation is a totally subsurface, lithostratigraphically complex, mixed siliciclastic-limestone-rich sequence forming an important fracture reservoir within Taranaki Basin, New Zealand. Petrographically the formation comprises a spectrum of interbedded rock types ranging from calcareous mudstone to wackestone to packstone to clean sparry grainstone. Skeletal and textural varieties within these rock types have aided in the identification of three environmentally distinctive megafacies for the Tikorangi Formation rocks-shelfal, foredeep, and basinal. Data from these megafacies have been used to detail previous conclusions on the petrogenesis and to further refine depositional paleoenvironmental models for the Tikorangi Formation in the central eastern Taranaki Basin margin.Shelfal Megafacies 1 rocks (reference well Hu Road-1A) are latest Oligocene (early Waitakian) in age and formed on or proximal to the Patea-Tongaporutu-Herangi basement high. They are characterised by coarse, skeletal-rich, pure sparry grainstone comprising shallow water, high energy taxa (bryozoans, barnacles, red algae) and admixtures of coarse well-rounded lithic sand derived from Mesozoic basement greywacke. This facies type has previously gone unrecorded in the Tikorangi Formation. Megafacies 2 is a latest Oligocene (early Waitakian) foredeep megafacies (formerly named shelfal facies) formed immediately basinward and west of the shelfal basement platform. It accumulated relatively rapidly (>20 cm/ka) from redeposition of shelfal megafacies biota that became intermixed with bathyal taxa to produce a spectrum of typically mudstone through to sparry grainstone. The resulting skeletal mix (bivalve, echinoderm, planktic and benthic foraminiferal, red algal, bryozoan, nannofossil) is unlike that in any of the age-equivalent limestone units in neighbouring onland King Country Basin. Megafacies 3 is an Oligocene (Whaingaroan-Waitakian) offshore basinal megafacies (formerly termed bathyal facies) of planktic foraminiferal-nannofossil-siliciclastic wackestone and mudstone formed away from redepositional influences. The siliciclastic input in this distal basinal setting (sedimentation rates <7 mm/ka) was probably sourced mainly from oceanic currents carrying suspended sediment from South Island provenances exposed at this time.Tikorangi Formation rocks record the Taranaki Basin’s only period of carbonate-dominated sedimentation across a full range of shelfal, foredeep, and basinal settings. Depositional controls on the three contrasting megafacies were fundamentally the interplay of an evolving and complex plate tectonic setting, including development of a carbonate foredeep, changes in relative sea level within an overall transgressive regime, and changing availability, sources, and modes of deposition of both bioclastic and siliciclastic sediments. The mixed siliciclastic-carbonate nature of the formation, and its skeletal assemblages, low-Mg calcite mineralogy, and delayed deep burial diagenetic history, are features consistent with formation in temperate-latitude cool waters

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Influence of Community Characteristics on Urban Forest Management Programs in New York State

    Get PDF
    US state and federal urban forest management agencies endeavor to support municipal forestry programs. However, the variation in programs within and among states may complicate support delivery. Municipal programs are often categorized by population size and community affluence to identify common characteristics and needs and facilitate support. To describe local urban forest management programs in New York State, a survey of municipalities gathered information on urban forest management program components, intentions, and needs. In addition to examining the contributions of population size and affluence, this study also evaluated the influence of metropolitan areas on programs in small municipalities and compared all community categorizations using national program standards. The survey revealed that a high percentage of municipalities plant and maintain trees. Nearly half of municipalities have tree inventories and street tree advisory boards, and a low percentage have an urban forest management plan. Almost all reported needing technical and educational assistance. Larger communities were more likely to have a comprehensive urban forest management program than medium-sized communities, and medium communities were more likely than small communities. Communities with high median household income (MHI) were more likely to have comprehensive urban forestry management programs than less affluent communities. However, low MHI and middle MHI communities had equivalent programs. Small municipalities in counties with large metropolitan areas possessed attributes similar to larger municipalities, compared to small communities in counties without these areas. This may indicate that proximity to a large metropolis has the potential to provide a small community with additional resources. These results suggest that smaller and less affluent communities, especially those outside counties containing large metropolitan areas, need more urban forest management assistance than larger and more affluent communities. However, all survey respondents indicated the need for support

    Low temperature shape relaxation of 2-d islands by edge diffusion

    Full text link
    We present a precise microscopic description of the limiting step for low temperature shape relaxation of two dimensional islands in which activated diffusion of particles along the boundary is the only mechanism of transport allowed. In particular, we are able to explain why the system is driven irreversibly towards equilibrium. Based on this description, we present a scheme for calculating the duration of the limiting step at each stage of the relaxation process. Finally, we calculate numerically the total relaxation time as predicted by our results and compare it with simulations of the relaxation process.Comment: 11 pages, 5 figures, to appear in Phys. Rev.

    Early stages of ramified growth in quasi-two-dimensional electrochemical deposition

    Full text link
    I have measured the early stages of the growth of branched metal aggregates formed by electrochemical deposition in very thin layers. The growth rate of spatial Fourier modes is described qualitatively by the results of a linear stability analysis [D.P. Barkey, R.H. Muller, and C.W. Tobias, J. Electrochem. Soc. {\bf 136}, 2207 (1989)]. The maximum growth rate is proportional to (I/c)δ(I/c)^\delta where II is the current through the electrochemical cell, cc the electrolyte concentration, and δ=1.37±0.08\delta = 1.37 \pm 0.08. Differences between my results and the theoretical predictions suggest that electroconvection in the electrolyte has a large influence on the instability leading to ramified growth.Comment: REVTeX, four ps figure

    Area-preserving dynamics of a long slender finger by curvature: a test case for the globally conserved phase ordering

    Full text link
    A long and slender finger can serve as a simple ``test bed'' for different phase ordering models. In this work, the globally-conserved, interface-controlled dynamics of a long finger is investigated, analytically and numerically, in two dimensions. An important limit is considered when the finger dynamics are reducible to the area-preserving motion by curvature. A free boundary problem for the finger shape is formulated. An asymptotic perturbation theory is developed that uses the finger aspect ratio as a small parameter. The leading-order approximation is a modification of ``the Mullins finger" (a well-known analytic solution) which width is allowed to slowly vary with time. This time dependence is described, in the leading order, by an exponential law with the characteristic time proportional to the (constant) finger area. The subleading terms of the asymptotic theory are also calculated. Finally, the finger dynamics is investigated numerically, employing the Ginzburg-Landau equation with a global conservation law. The theory is in a very good agreement with the numerical solution.Comment: 8 pages, 4 figures, Latex; corrected typo

    Flexible silicon-based alpha-particle detector

    Get PDF
    The detection of alpha particles in the field can be challenging due to their short range in air of often only a few centimeters or less. This short range is a particular issue for measuring radiation inside contaminated pipework in the nuclear industry, for which there is currently no simple method available without cutting the pipes open. Here, we propose an approach for low cost, rapid, and safe identification of internally contaminated pipework based on a flexible 30 × 10 mm2 sheet of 50 μm thin crystalline silicon. Following established fabrication steps of pn-junction diodes, we have constructed a device with a signal-to-noise ratio of >20 in response to 5.5 MeV alpha-particles using a bespoke amplifier circuit. As flexible detectors may readily conform to a curved surface and are able to adapt to the curvature of a given pipeline, our prototype device stands out as a viable solution for nuclear decommissioning and related applications
    corecore