9 research outputs found

    Diffusion Coefficients, Short-Term Cosmic Ray Modulation, and Convected Magnetic Structures

    Get PDF
    Three cases of large-amplitude, small spatial-scale interplanetary particle gradients observed by the anticoincidence shield (ACS) aboard the INTEGRAL spacecraft in 2006 are investigated. The high data rates provided by the INTEGRAL ACS allow an unprecedented ability to probe the fine structure of GCR propagation in the inner Heliosphere. For two of the three cases, calculating perpendicular and parallel cosmic ray diffusion coefficients based on both field and particle data results in parallel diffusion appearing to satisfy a convection gradient current balance, provided that the magnetic scattering of the particles can be described by quasi-linear theory. In the third case, perpendicular diffusion seems to dominate. The likelihood of magnetic flux rope topologies within solar ejecta affecting the local modulation is considered, and its importance in understanding the field-particle interaction for the astrophysics of nonthermal particle phenomena is discussed

    Composition Structure of Interplanetary Coronal Mass Ejections From Multispacecraft Observations, Modeling, and Comparison with Numerical Simulations

    Full text link
    We present an analysis of the ionic composition of iron for two interplanetary coronal mass ejections observed in May 21-23 2007 by the ACE and STEREO spacecraft in the context of the magnetic structure of the ejecta flux rope, sheath region, and surrounding solar wind flow. This analysis is made possible due to recent advances in multispacecraft data interpolation, reconstruction, and visualization as well as results from recent modeling of ionic charge states in MHD simulations of magnetic breakout and flux cancellation CME initiation. We use these advances to interpret specific features of the ICME plasma composition resulting from the magnetic topology and evolution of the CME. We find that in both the data and our MHD simulations, the flux ropes centers are relatively cool, while charge state enhancements surround and trail the flux ropes. The magnetic orientation of the ICMEs are suggestive of magnetic breakout-like reconnection during the eruption process, which could explain the spatial location of the observed iron enhancements just outside the traditional flux rope magnetic signatures and between the two ICMEs. Detailed comparisons between the simulations and data were more complicated, but a sharp increase in high iron charge states in the ACE and STEREO-A data during the second flux rope corresponds well to similar features in the flux cancellation results. We discuss the prospects of this integrated in-situ data analysis and modeling approach to advancing our understanding of the unified CME-to-ICME evolution.Comment: Accepted for submission to The Astrophysical Journa

    Investigating Remote-sensing Techniques to Reveal Stealth Coronal Mass Ejections

    Get PDF
    Eruptions of coronal mass ejections (CMEs) from the Sun are usually associated with a number of signatures that can be identified in solar disc imagery. However, there are cases in which a CME that is well observed in coronagraph data is missing a clear low-coronal counterpart. These events have received attention during recent years, mainly as a result of the increased availability of multi-point observations, and are now known as 'stealth CMEs'. In this work, we analyse examples of stealth CMEs featuring various levels of ambiguity. All the selected case studies produced a large-scale CME detected by coronagraphs and were observed from at least one secondary viewpoint, enabling a priori knowledge of their approximate source region. To each event, we apply several image processing and geometric techniques with the aim to evaluate whether such methods can provide additional information compared to the study of "normal" intensity images. We are able to identify at least weak eruptive signatures for all events upon careful investigation of remote-sensing data, noting that differently processed images may be needed to properly interpret and analyse elusive observations. We also find that the effectiveness of geometric techniques strongly depends on the CME propagation direction with respect to the observers and the relative spacecraft separation. Being able to observe and therefore forecast stealth CMEs is of great importance in the context of space weather, since such events are occasionally the solar counterparts of so-called 'problem geomagnetic storms'.Comment: 26 pages, 8 figures, 1 table, accepted for publication in Frontiers in Astronomy and Space Science

    CME Evolution in the Structured Heliosphere and Effects at Earth and Mars During Solar Minimum

    Full text link
    The activity of the Sun alternates between a solar minimum and a solar maximum, the former corresponding to a period of "quieter" status of the heliosphere. During solar minimum, it is in principle more straightforward to follow eruptive events and solar wind structures from their birth at the Sun throughout their interplanetary journey. In this paper, we report analysis of the origin, evolution, and heliospheric impact of a series of solar transient events that took place during the second half of August 2018, i.e. in the midst of the late declining phase of Solar Cycle 24. In particular, we focus on two successive coronal mass ejections (CMEs) and a following high-speed stream (HSS) on their way towards Earth and Mars. We find that the first CME impacted both planets, whilst the second caused a strong magnetic storm at Earth and went on to miss Mars, which nevertheless experienced space weather effects from the stream interacting region (SIR) preceding the HSS. Analysis of remote-sensing and in-situ data supported by heliospheric modelling suggests that CME--HSS interaction resulted in the second CME rotating and deflecting in interplanetary space, highlighting that accurately reproducing the ambient solar wind is crucial even during "simpler" solar minimum periods. Lastly, we discuss the upstream solar wind conditions and transient structures responsible for driving space weather effects at Earth and Mars.Comment: 27 pages, 7 figures, 1 table, accepted for publication in Space Weathe

    Heliophysics and Amateur Radio:Citizen Science Collaborations for Atmospheric, Ionospheric, and Space Physics Research and Operations

    Get PDF
    The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities

    Assessment of Radiometer Calibration With GPS Radio Occultation for the MiRaTA CubeSat Mission

    No full text
    © 2016 IEEE. The microwave radiometer technology acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office. The science payload on MiRaTA consists of a triband microwave radiometer and global positioning system (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the compact total electron content and atmospheric GPS sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPSRO: 1) new ultracompact and low-power technology for multichannel and multiband passive microwave radiometers, 2) the application of a commercial off-the-shelf GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and 3) a new approach to space-borne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective 3, developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K

    Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections

    Get PDF
    Space Science Reviews volume 217, Article number: 84 (2021)Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cannot be traced back to an observed CME, or, if the CME is identified, its origin may be elusive or ambiguous in coronal images. Such CMEs have been termed "stealth CMEs". In this review, we focus on these "problem" geomagnetic storms in the sense that the solar/CME precursors are enigmatic and stealthy. We start by reviewing evidence for stealth CMEs discussed in past studies. We then identify several moderate to strong geomagnetic storms (minimum Dst < -50 nT) in solar cycle 24 for which the related solar sources and/or CMEs are unclear and apparently stealthy. We discuss the solar and in situ circumstances of these events and identify several scenarios that may account for their elusive solar signatures. These range from observational limitations (e.g., a coronagraph near Earth may not detect an incoming CME if it is diffuse and not wide enough) to the possibility that there is a class of mass ejections from the Sun that have only weak or hard-to-observe coronal signatures. In particular, some of these sources are only clearly revealed by considering the evolution of coronal structures over longer time intervals than is usually considered. We also review a variety of numerical modelling approaches that attempt to advance our understanding of the origins and consequences of stealthy solar eruptions with geoeffective potential. Specifically, we discuss magnetofrictional modelling of the energisation of stealth CME source regions and magnetohydrodynamic modelling of the physical processes that generate stealth CME or CME-like eruptions, typically from higher altitudes in the solar corona than CMEs from active regions or extended filament channels.Peer reviewe
    corecore