26,860 research outputs found

    SAFT-γ force field for the simulation of molecular fluids: 8. hetero-group coarse-grained models of perfluoroalkylalkanes assessed with new vapour-liquid interfacial tension data

    Get PDF
    The air-liquid interfacial behaviour of linear perfluoroalkylalkanes (PFAAs) is reported through a combined experimental and computer simulation study. The surface tensions of seven liquid PFAAs (perfluorobutylethane, F4H2; perfluorobutylpentane, F4H5; perfluorobutylhexane, F4H6, perfluorobutyloctane, F4H8; perfluorohexylethane, F6H2; perfluorohexylhexane, F6H6; and perfluorohexyloctane, F6H8) are experimentally determined over a wide temperature range (276 to 350 K). The corresponding surface thermodynamic properties and the critical temperatures of the studied compounds are estimated from the temperature dependence of the surface tension. Experimental density and vapour pressure data are employed to parameterize a generic heteronuclear coarse-grained intermolecular potential of the SAFT- γ family for PFAAs. The resulting force field is used in direct molecular dynamics simulations to predict with quantitative agreement the experimental tensions and to explore the conformations of the molecules in the interfacial region revealing a preferential alignment of the PFAA molecules towards the interface and an enrichment of the perfluoro-groups at the outer interface region

    Resonant enhancements of high-order harmonic generation

    Get PDF
    Solving the one-dimensional time-dependent Schr\"odinger equation for simple model potentials, we investigate resonance-enhanced high-order harmonic generation, with emphasis on the physical mechanism of the enhancement. By truncating a long-range potential, we investigate the significance of the long-range tail, the Rydberg series, and the existence of highly excited states for the enhancements in question. We conclude that the channel closings typical of a short-range or zero-range potential are capable of generating essentially the same effects.Comment: 7 pages revtex, 4 figures (ps files

    A 'p-n' diode with hole and electron-doped lanthanum manganite

    Full text link
    The hole-doped manganite La0.7Ca0.3MnO3 and the electron-doped manganite La0.7Ce0.3MnO3 undergo an insulator to metal transition at around 250 K, above which both behave as a polaronic semiconductor. We have successfully fabricated an epitaxial trilayer (La0.7Ca0.3MnO3/SrTiO3/La0.7Ce0.3MnO3), where SrTiO3 is an insulator. At room temperature, i.e. in the semiconducting regime, it exhibits asymmetric current-voltage (I-V) characteristics akin to a p-n diode. The observed asymmetry in the I-V characteristics disappears at low temperatures where both the manganite layers are metallic. To the best of our knowledge, this is the first report of such a p-n diode, using the polaronic semiconducting regime of doped manganites.Comment: PostScript text and 2 figures, to be published in Appl. Phys. Lett

    Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation

    Full text link
    In this paper we demonstrate an active polarization drift compensation scheme for optical fibres employed in a quantum key distribution experiment with polarization encoded qubits. The quantum signals are wavelength multiplexed in one fibre along with two classical optical side channels that provide the control information for the polarization compensation scheme. This set-up allows us to continuously track any polarization change without the need to interrupt the key exchange. The results obtained show that fast polarization rotations of the order of 40*pi rad/s are effectively compensated for. We demonstrate that our set-up allows continuous quantum key distribution even in a fibre stressed by random polarization fluctuations. Our results pave the way for Bell-state measurements using only linear optics with parties separated by long-distance optical fibres

    Very Long Baseline Array observations of the Intraday Variable source J1128+592

    Full text link
    Short time-scale flux density variations of flat spectrum radio sources are often explained by the scattering of radio waves in the turbulent, ionized Interstellar Matter of the Milky Way. One of the most convincing observational arguments in favor of this is the annual modulation of the variability time-scale caused by the Earth orbital motion around the Sun. J1128+592 is an IDV source with a possible annual modulation in its variability time-scale. We observed the source in 6 epochs with the VLBA at 5, 8 and 15 GHz in total intensity and polarization. The VLBA observations revealed an east-west oriented core-jet structure. Its position angle agrees with the angle of anisotropy derived from the annual modulation model. No significant long-term structural changes were observed with VLBI on mas-scales, however, compared to archival data, the VLBI core size is expanded. This expansion offers a possible explanation to the observed decrease of the strength of IDV. VLBI polarimetry revealed significant changes in the electric vector position angle and Rotation Measure of the core and jet. Part of the observed RM variability could be attributed to a scattering screen (37 pc distance), which covers the source (core and jet) and which may be responsible for the IDV. Superposition of polarized sub-components below the angular resolution limit may affect the observed RM as well.Comment: accepted for A&A (11 pages, 11 figures
    corecore