32,340 research outputs found
SAFT-γ force field for the simulation of molecular fluids: 8. hetero-group coarse-grained models of perfluoroalkylalkanes assessed with new vapour-liquid interfacial tension data
The air-liquid interfacial behaviour of linear perfluoroalkylalkanes (PFAAs) is reported through a combined experimental and computer simulation study. The surface tensions of seven liquid PFAAs (perfluorobutylethane, F4H2; perfluorobutylpentane, F4H5; perfluorobutylhexane, F4H6, perfluorobutyloctane, F4H8; perfluorohexylethane, F6H2; perfluorohexylhexane, F6H6; and perfluorohexyloctane, F6H8) are experimentally determined over a wide temperature range (276 to 350 K). The corresponding surface thermodynamic properties and the critical temperatures of the studied compounds are estimated from the temperature dependence of the surface tension. Experimental density and vapour pressure data are employed to parameterize a generic heteronuclear coarse-grained intermolecular potential of the SAFT- γ family for PFAAs. The resulting force field is used in direct molecular dynamics simulations to predict with quantitative agreement the experimental tensions and to explore the conformations of the molecules in the interfacial region revealing a preferential alignment of the PFAA molecules towards the interface and an enrichment of the perfluoro-groups at the outer interface region
Break-down of the single-active-electron approximation for one-photon ionization of the B state of H exposed to intense laser fields
Ionization, excitation, and de-excitation to the ground state is studied
theoretically for the first excited singlet state B of H
exposed to intense laser fields with photon energies in between about 3 eV and
13 eV. A parallel orientation of a linear polarized laser and the molecular
axis is considered. Within the dipole and the fixed-nuclei approximations the
time-dependent Schr\"odinger equation describing the electronic motion is
solved in full dimensionality and compared to simpler models. A dramatic
break-down of the single-active-electron approximation is found and explained
to be due to the inadequate description of the final continuum states.Comment: 9 pages, 4 figure
Resonant enhancements of high-order harmonic generation
Solving the one-dimensional time-dependent Schr\"odinger equation for simple
model potentials, we investigate resonance-enhanced high-order harmonic
generation, with emphasis on the physical mechanism of the enhancement. By
truncating a long-range potential, we investigate the significance of the
long-range tail, the Rydberg series, and the existence of highly excited states
for the enhancements in question. We conclude that the channel closings typical
of a short-range or zero-range potential are capable of generating essentially
the same effects.Comment: 7 pages revtex, 4 figures (ps files
A 'p-n' diode with hole and electron-doped lanthanum manganite
The hole-doped manganite La0.7Ca0.3MnO3 and the electron-doped manganite
La0.7Ce0.3MnO3 undergo an insulator to metal transition at around 250 K, above
which both behave as a polaronic semiconductor. We have successfully fabricated
an epitaxial trilayer (La0.7Ca0.3MnO3/SrTiO3/La0.7Ce0.3MnO3), where SrTiO3 is
an insulator. At room temperature, i.e. in the semiconducting regime, it
exhibits asymmetric current-voltage (I-V) characteristics akin to a p-n diode.
The observed asymmetry in the I-V characteristics disappears at low
temperatures where both the manganite layers are metallic. To the best of our
knowledge, this is the first report of such a p-n diode, using the polaronic
semiconducting regime of doped manganites.Comment: PostScript text and 2 figures, to be published in Appl. Phys. Lett
Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation
In this paper we demonstrate an active polarization drift compensation scheme
for optical fibres employed in a quantum key distribution experiment with
polarization encoded qubits. The quantum signals are wavelength multiplexed in
one fibre along with two classical optical side channels that provide the
control information for the polarization compensation scheme. This set-up
allows us to continuously track any polarization change without the need to
interrupt the key exchange. The results obtained show that fast polarization
rotations of the order of 40*pi rad/s are effectively compensated for. We
demonstrate that our set-up allows continuous quantum key distribution even in
a fibre stressed by random polarization fluctuations. Our results pave the way
for Bell-state measurements using only linear optics with parties separated by
long-distance optical fibres
Very Long Baseline Array observations of the Intraday Variable source J1128+592
Short time-scale flux density variations of flat spectrum radio sources are
often explained by the scattering of radio waves in the turbulent, ionized
Interstellar Matter of the Milky Way. One of the most convincing observational
arguments in favor of this is the annual modulation of the variability
time-scale caused by the Earth orbital motion around the Sun. J1128+592 is an
IDV source with a possible annual modulation in its variability time-scale. We
observed the source in 6 epochs with the VLBA at 5, 8 and 15 GHz in total
intensity and polarization. The VLBA observations revealed an east-west
oriented core-jet structure. Its position angle agrees with the angle of
anisotropy derived from the annual modulation model. No significant long-term
structural changes were observed with VLBI on mas-scales, however, compared to
archival data, the VLBI core size is expanded. This expansion offers a possible
explanation to the observed decrease of the strength of IDV. VLBI polarimetry
revealed significant changes in the electric vector position angle and Rotation
Measure of the core and jet. Part of the observed RM variability could be
attributed to a scattering screen (37 pc distance), which covers the source
(core and jet) and which may be responsible for the IDV. Superposition of
polarized sub-components below the angular resolution limit may affect the
observed RM as well.Comment: accepted for A&A (11 pages, 11 figures
Non-Gaussian statistics and extreme waves in a nonlinear optical cavity
A unidirectional optical oscillator is built by using a liquid crystal
light-valve that couples a pump beam with the modes of a nearly spherical
cavity. For sufficiently high pump intensity, the cavity field presents a
complex spatio-temporal dynamics, accompanied by the emission of extreme waves
and large deviations from the Gaussian statistics. We identify a mechanism of
spatial symmetry breaking, due to a hypercycle-type amplification through the
nonlocal coupling of the cavity field
- …