7 research outputs found

    JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b

    Full text link
    Clouds are prevalent in many of the exoplanet atmospheres that have been observed to date. For transiting exoplanets, we know if clouds are present because they mute spectral features and cause wavelength-dependent scattering. While the exact composition of these clouds is largely unknown, this information is vital to understanding the chemistry and energy budget of planetary atmospheres. In this work, we observe one transit of the hot Jupiter WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12 μ\rm{\mu}m. These wavelengths allow us to probe absorption due to the vibrational modes of various predicted cloud species. Our transmission spectrum shows additional opacity centered at 8.6 μ\rm{\mu}m, and detailed atmospheric modeling and retrievals identify this feature as SiO2_2(s) (quartz) clouds. The SiO2_2(s) clouds model is preferred at 3.5-4.2σ\sigma versus a cloud-free model and at 2.6σ\sigma versus a generic aerosol prescription. We find the SiO2_2(s) clouds are comprised of small ∼0.01{\sim}0.01 μ\rm{\mu}m particles, which extend to high altitudes in the atmosphere. The atmosphere also shows a depletion of H2_2O, a finding consistent with the formation of high-temperature aerosols from oxygen-rich species. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we will use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Comment: 19 pages, 7 figures, accepted for publication in ApJ

    Characterizing the 3D structure of molecular cloud envelopes in the Cloud Factory simulations

    Get PDF
    We leverage recent numerical simulations of highly resolved star-forming regions in a Milky Way–like galaxy to explore the nature of extended gaseous envelopes around molecular clouds. We extract a sample of two dozen star-forming clouds from the feedback-dominated suite of Cloud Factory simulations. With the goal of exploring the 3D thermal and chemical structure of the gas, we measure and fit the clouds' radial profiles with multiple tracers, including nH1, nH2, NHtot, nCO, and gas temperature. We find that while solar neighborhood clouds recently detected via 3D dust mapping have radially symmetric, low-density envelopes that extend ∼10–15 pc, the simulated cloud envelopes are primarily radially asymmetric with low-density envelopes that extend only ∼2–3 pc. One potential explanation for the absence of extended envelopes in the simulated clouds may be the lack of magnetic fields, while a stronger local feedback prescription compared to solar neighborhood conditions may drive the radially asymmetric cloud morphologies. We make the pipeline used to extract and characterize the radial profiles of the clouds publicly available, which can be used in complementary and future simulations to shed additional light on the key physics shaping the formation and evolution of star-forming structures in the Milky Way

    JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b

    No full text
    Clouds are prevalent in many of the exoplanet atmospheres that have been observed to date. For transiting exoplanets, we know if clouds are present because they mute spectral features and cause wavelength-dependent scattering. While the exact composition of these clouds is largely unknown, this information is vital to understanding the chemistry and energy budget of planetary atmospheres. In this work, we observe one transit of the hot Jupiter WASP-17b with JWST’s Mid-Infrared Instrument Low Resolution Spectrometer and generate a transmission spectrum from 5 to 12 μ m. These wavelengths allow us to probe absorption due to the vibrational modes of various predicted cloud species. Our transmission spectrum shows additional opacity centered at 8.6 μ m, and detailed atmospheric modeling and retrievals identify this feature as SiO _2 (s) (quartz) clouds. The SiO _2 (s) clouds model is preferred at 3.5–4.2 σ versus a cloud-free model and at 2.6 σ versus a generic aerosol prescription. We find the SiO _2 (s) clouds are composed of small ∼0.01 μ m particles, which extend to high altitudes in the atmosphere. The atmosphere also shows a depletion of H _2 O, a finding consistent with the formation of high-temperature aerosols from oxygen-rich species. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we will use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS)
    corecore