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Abstract

We leverage recent numerical simulations of highly resolved star-forming regions in a Milky Way–like galaxy to
explore the nature of extended gaseous envelopes around molecular clouds. We extract a sample of two dozen star-
forming clouds from the feedback-dominated suite of Cloud Factory simulations. With the goal of exploring the
3D thermal and chemical structure of the gas, we measure and fit the clouds’ radial profiles with multiple tracers,
including nHI

, nH2, nHtot, nCO, and gas temperature. We find that while solar neighborhood clouds recently detected
via 3D dust mapping have radially symmetric, low-density envelopes that extend ∼10–15 pc, the simulated cloud
envelopes are primarily radially asymmetric with low-density envelopes that extend only ∼2–3 pc. One potential
explanation for the absence of extended envelopes in the simulated clouds may be the lack of magnetic fields,
while a stronger local feedback prescription compared to solar neighborhood conditions may drive the radially
asymmetric cloud morphologies. We make the pipeline used to extract and characterize the radial profiles of the
clouds publicly available, which can be used in complementary and future simulations to shed additional light on
the key physics shaping the formation and evolution of star-forming structures in the Milky Way.

Unified Astronomy Thesaurus concepts: Diffuse molecular clouds (381); Molecular clouds (1072); Interstellar
clouds (834); Hydrodynamical simulations (767)

1. Introduction

An appreciable fraction of the mass budget of the interstellar
medium (ISM) belongs to dense, cold formations termed
molecular clouds (e.g., Blitz 1993). These molecular clouds are
the sites of star formation in galaxies, and as a result play a key
role in galaxy evolution. The structure of a molecular cloud is
subject to a complicated interplay between galactic dynamics,
self-gravity, feedback, and magnetic fields (e.g., Dobbs et al.
2014). Understanding the structure of molecular clouds is
therefore integral not only to understanding these physical
mechanisms, but also understanding where, when, and how
stars form and interact with their broader galactic environment
(e.g., Chevance et al. 2022).

Molecular cloud structure has been extensively studied using
both observations and simulations. Traditionally, observations
of molecular cloud structure have largely been limited to either
2D projected space (via integrated plane-of-the-sky dust
emission or dust extinction maps; André et al. 2010; Froebrich
& Rowles 2010; Lombardi et al. 2010; Planck Collaboration
et al. 2011), or 3D “position–position–velocity” space obtained
via carbon monoxide (CO) spectral-line mapping (Dame et al.
2001; Jackson et al. 2006; Ridge et al. 2006; Colombo et al.
2019; Duarte-Cabral et al. 2021), where the third axis is the
radial velocity of the gas obtained from the Doppler effect, not
distance.

However, with the launch of Gaia, true 3D spatial,
“position–position–position” maps of the ISM can now be
reconstructed with the distance resolution necessary to resolve
the internal structure of molecular clouds, owing to a technique
known as 3D dust mapping (Green et al. 2019; Rezaei &
Kainulainen 2022; Vergely et al. 2022; Dharmawardena et al.
2023). Notably, Leike et al. (2020) produce a highly resolved
∼2 pc resolution 3D dust map of the solar neighborhood (out to
a distance∼ 400 pc from the Sun) using distance and extinction
estimates to a large number of stars inferred from a
combination of Gaia DR2 astrometric data and Gaia, Two
Micron All Sky Survey, Pan-STARRS, and ALLWISE
photometric data (see Anders et al. 2019).
Zucker et al. (2021) utilize the 3D dust map from Leike et al.

(2020) to create 3D models of local molecular clouds and
characterize their 3D spatial structure.7 Zucker et al. (2021) find
that local molecular clouds are filamentary, and extract radial
volume density profiles from the 3D dust map to study the
extended structure of clouds as a function of distance from their
filamentary “spines.” Zucker et al. (2021) find that the averaged
radial volume density profiles of local molecular clouds are
best fit with a two-component Gaussian function, where an
inner Gaussian fits the higher-density peak near the core of the
cloud and an outer Gaussian fits the lower-density extended
tail. Zucker et al. (2021) propose that the two separate
Gaussians either represent a chemical phase transition (between
low-density atomic gas in the outskirts and dense molecular gas
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near the core of the cloud) or an atomic gas thermal phase
transition (between the unstable neutral medium (UNM) near
the outskirts of the cloud and the cold neutral medium (CNM)
near the core of the cloud). However, observational 3D dust
data only probes differential extinction, which can only
approximate the total hydrogen gas volume density within
the cloud thanks to constraints on the wavelength-dependent
extinction curve (Draine 2009). Any information on gas phase,
composition, and temperature is not directly accessible from
3D dust maps alone. In order to test the hypothesis from Zucker
et al. (2021), we instead turn to simulations of molecular
clouds.

Simulations of molecular clouds over the last decade have
progressed from isolated clouds with only one or two feedback
mechanisms to simulations that follow molecular cloud
lifetimes in full with both local and galactic contexts included.
One goal of a specific subset of simulations is to elucidate the
relationship between molecular cloud structure and its chemical
composition as the cloud evolves over time and forms both
dense gas and young stars. These simulations have tied together
chemical processes that form molecular hydrogen (H2) and CO
with the large-scale hydrodynamic evolution of molecular
clouds (e.g., Armillotta et al. 2020; Seifried et al. 2020; Hu
et al. 2021, 2021; Jeffreson et al. 2021; Kim et al. 2023).

In particular, the Cloud Factory simulations of Smith et al.
(2020) study the effects of the galactic potential, gravitational
collapse, and supernova feedback on the formation and
destruction of H2 and CO. More broadly, 3D simulations like
the Cloud Factory track a network of filamentary clouds and
their chemical compositions, which provide a large set of
simulated clouds to compare with multiwavelength observa-
tions probing the chemical and thermal structure of Milky Way
clouds (see Chevance et al. 2022, for a more complete review
of resolved cloud simulations).

With the advent of Gaia and 3D dust mapping, there are now
sufficient observational data on the 3D structure of molecular
clouds to facilitate a comparison to 3D simulated filamentary
clouds. In this paper, we extend the methodology of Zucker
et al. (2021) and develop a pipeline that efficiently compares
the 3D structure detected in resolved numerical simulations of
star-forming clouds to new 3D observational data. Leveraging
this pipeline we aim to extract the radial profiles and
morphologies of star-forming clouds in the Cloud Factory
simulations to examine differences in cloud structure detected
in observations and simulations quantitatively. After we show
that the simulations quantitatively reproduce the observations, a
pipeline is built to examine whether the two-component
Gaussian structure of molecular clouds identified in previous
3D dust mapping observational work may be tracing a
chemical or thermal phase transition.

In Section 2, we summarize the Cloud Factory suite of
simulations utilized in this work. In Section 3, we detail the
methods used to analyze the simulations. In Section 4, we
summarize the results of the pipeline applied to the Cloud Factory
simulations and highlight the range of structures detected in an
ensemble of the clouds. In Section 5 we discuss the results and
propose potential explanations for discrepancies between simula-
tions and observations. Finally, we conclude in Section 6.

2. The Cloud Factory

The aim of the Cloud Factory simulations is to investigate
the formation of cold dense structure in the ISM while

including the galactic-scale forces thought to be responsible for
cloud assembly. Specifically the simulations contain an analytic
galactic potential, and therefore naturally have disks with
differential rotation and well-defined spiral arms. Full details
can be found in Smith et al. (2020) but we summarize
them here.
The models are performed using the AREPO code

(Springel 2010) with custom physics modules to describe star
formation and cold, dense gas. The chemical evolution of the
gas is modeled using the hydrogen chemistry of Glover & Mac
Low (2007a, 2007b), together with the highly simplified
treatment of CO formation and destruction introduced in
Nelson & Langer (1997). Our modeling of the hydrogen
chemistry includes H2 formation on grains, H2 destruction by
photodissociation, collisional dissociation of atomic hydrogen,
H+ recombination in the gas phase and on grain surfaces (see
Table 1 of Glover & Mac Low 2007a), and cosmic-ray
ionization. We assume that the strength and spectral shape of
the UV portion of the interstellar radiation field (ISRF) are the
same as the values for the solar neighborhood derived by
Draine (1978; equivalent to 1.7× the field strength derived by
Habing 1968). To treat the attenuation of the ISRF due to H2

self-shielding, CO self-shielding, the shielding of CO by H2,
and by dust absorption, we use the TREECOL algorithm
developed by Clark et al. (2012) assuming a shielding length of
Lsh= 30 pc, We adopt a cosmic-ray ionization rate of
ξH= 3× 10−17 s−1 for atomic hydrogen, and a rate twice this
for molecular hydrogen. Finally we assume a solar metal
abundance, and a 100:1 gas-to-dust ratio. Heating and cooling
of the gas is computed simultaneously with the solution of the
chemical rate equations.
Star formation is modeled via sink particles (Bate et al.

1995), which are nongaseous particles that represent collapsing
regions of gas that will form small (sub)clusters of stars. These
are formed by checking if regions of gas exceed a critical
density and are unambiguously bound, collapsing, and
accelerating inwards. Only if these criteria are met will the
gas be replaced with a sink particle, which can then accrete
additional mass that falls within a chosen accretion radius of
the cell if it is gravitationally bound to it.
Using the model of Sormaniet al. (2017), we sample the initial

mass function and associate supernovae with the massive stars as
described by Tress et al. (2020). For each supernova, we calculate
an injection radius, which is the radius of the smallest sphere
centered on the supernova that contains at least 40 grid cells. If the
injection radius is smaller than the expected radius of a supernova
remnant at the end of its Sedov–Taylor phase, we inject thermal
energy from the supernova; otherwise, we inject momentum (e.g.,
Gatto et al. 2015). Mass is returned with each supernova
explosion such that when the last supernova occurs the gaseous
component of the sink is exhausted. The sink is then turned into a
star particle. To account for Type Ia supernovae, we also
randomly select a star particle every 250 yr and create a supernova
event at its position.
The gravitational potential of nongaseous cells is determined

using an analytic potential. For the axisymmetric part of the
potential, we use the best-fitting model of McMillan (2017),
which was created to be consistent with various observational
and theoretical constraints for the Milky Way and consists of
the sum of bulge, disk, and halo components. We then include
a spiral perturbation to the potential, generated in the same way
as in Smith et al. (2014). Briefly, we use a four-armed spiral
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component from Cox & Gómez (2002) with a pitch angle
α= 15° and a pattern speed of 2× 10−8 rad yr−1.

The initial condition is inspired by the Milky Way gas disk
model of McMillan (2017), which is based on a combination of
observational constraints and theoretical modeling. It consists
of two density distributions for H I and H2 that decline
exponentially at large radii. As we focus on Milky Way–like
clouds outside the central bar, we neglect galactic radii smaller
than 4 kpc. The gas disk is given the initial rotation curve that
arises from the analytic potential, which for our disk
corresponds to a rotation curve of order 220 km s−1.

The simulations initially have a base mass resolution of
1000 Me. However once a steady state has been reached (after
150 Myr) we turn on refinement for two spiral arm passages
(∼70 Myr) within a 3 kpc box that corotates with the gas centered
on a galactic radius of 8 kpc. In this high-resolution region the gas
has a target mass of initially 100 Me for the first 60 Myr, but it is
further lowered to 10 Me for the final 10 Myr. In addition to the
mass requirement we always require that the Jeans length is
resolved by at least four cells up to our sink creation density.
Within the 3 kpc box, sinks form above a minimum creation
density of 574 cm−3 (typically about 104 cm−3 in practice once
energy checks are satisfied) and have an accretion radius of 0.1 pc.
To avoid discontinuous jumps in the cell size, particularly where
the target resolution is changing at the boundaries of the high-
resolution box, we require that the cell radius of adjacent AREPO
cells can differ by no more than a factor of 2 at any time
throughout the entire simulation volume.

The Cloud Factory simulations proceed to refine to even
smaller scales in selected clouds, but for this study we are
interested in the statistics of a large area and so we use only the
3 kpc box. The original models also had two versions of this
3 kpc box: a “potential-dominated” version and a “feedback-
dominated” version. The potential-dominated version is where
gas self-gravity was only turned on for the lifetimes of current
molecular clouds (5 Myr), and supernova feedback is random.
The feedback-dominated version is where gas self-gravity has
been turned on for multiple molecular cloud generations
(50 Myr) and supernova feedback is tied to the sink particles
that represent star formation. The aim of the two versions is to
focus on the differences arising between two extreme cases. In
this paper we focus primarily on the feedback-dominated case,
as it more faithfully reproduces the larger scale height of the
disk in the solar neighborhood seen in recent 3D dust maps
(Leike et al. 2020; Edenhofer et al. 2023). We emphasize,
however, that the feedback-dominated case is likely an upper
limit on the strength of supernova feedback experienced in the
ISM. We additionally take a 0.5 kpc subset of the z-direction
since the z-direction in the 3 kpc box is largely empty. We
revisit the potential-dominated case in Section 5.

3. Methods

Here we outline our methodology for characterizing the
structure of molecular clouds in the Cloud Factory simulations.
We start by subdividing the Cloud Factory simulations into
smaller subgrids and identifying subgrids with an appreciable
fraction of molecular star-forming gas (Section 3.1). Then,
building on the methodology of Zucker et al. (2021), we
iteratively extract and “skeletonize” simulated molecular clouds in
the simulations (Section 3.2), compute their radial profiles
(Section 3.3), and fit the radial volume density profiles with
one- and two-component Gaussian functions (Section 3.4). After

extracting the clouds and characterizing their radial profiles, we
also sort clouds based on whether they contain sink particles, in
order to correlate their observed cloud structure with their degree
of star formation.

3.1. Converting and Sorting Grids

As discussed in Section 2, we focus primarily on the
feedback-dominated suite of the Cloud Factory simulations.
However, we repeat the analysis detailed in the following
sections on one grid of the potential-dominated suite and report
preliminary results in Section 5. We start by dividing the
feedback-dominated box (a 3× 3× 0.5 kpc slab) into sub-
regions. Each subregion is a 500× 500× 500 pc box that has
been regridded to a uniform 1 pc3 resolution. The Cloud
Factory is built on the AREPO code (Springel 2010; Pakmor
et al. 2016). The Cloud Factory implementation of AREPO
tracks the total gas density (ρgas) and temperature, as well as the
carbon monoxide abundance (xCO), molecular hydrogen
abundance (xH2), and ionized hydrogen abundance (xH+) with
respect to the total gas density.
We convert AREPO units to physical units and derive the total

volume density of hydrogen nuclei using the mean molecular
weight of hydrogen (n

mH 1.4 p
tot

gas=
r

´
, where 1.4 accounts for the

helium abundance). Using the total gas density and abundance
grids we then derive the volume density of carbon monoxide,
molecular hydrogen, and ionized hydrogen (nCO,H ,H2 =+

x nCO,H ,H H2 tot´+ ). The atomic hydrogen (HI) volume density is
derived by subtracting the contributions of the molecular and
ionized hydrogen from the total hydrogen gas density
(n n n n2H H H HI tot 2= - - +). We then narrow down the grids
based on the amount of molecular gas contained within them. We
choose only to analyze grids containing at least 1000 voxels
(>1000 pc3 volume, equivalent to a spherical cloud with a radius
of ≈6 pc) with a relative abundance x 0.4H2 > . Grids with
appreciable fractions of molecular gas provide the best comparison
to observed molecular clouds, and are utilized in the remainder of
the analysis. We identify nine grids that fit this criterion, namely
x1465y1390z1400, x1465y1400z1395, x1465y1400z1400, x1465
y1405z1395, x1465y1400z1400, x1470y1400z1395, x1470y1400
z1400, x1475y1390z1395, and x1475y1390z1400.

3.2. Simulated Cloud Identification and Skeletonization

In previous work molecular clouds and their substructure have
been characterized by topological skeletons (Menʼshchikov 2013;
Koch & Rosolowsky 2015). Topological skeletons are 1 pixel-
wide representations of 2D or 3D shapes that are equidistant to the
boundary surface of the original shape. Topological skeletons are
derived by starting from the boundary of a shape and subtracting
off 1 pixel, moving inwards until only a single pixel-wide shape
remains. For example, the skeletonization of a 2D circle will result
in a single point in the center, and the skeletonization of a 3D
cylinder will result in a straight line through the center of the
cylinder.
Following the formalism of Zucker et al. (2021) we compute

topological skeletons of simulated molecular clouds by
employing a 3D version of the FilFinder package (Koch &
Rosolowsky 2015). We first apply a density threshold mask of
n 35 cmH

3
tot >

- to the entire simulation grid, following the
same line of reasoning as Zucker et al. (2021). Individual
features that survive masking are then iteratively identified.
This is accomplished by looping over each voxel in the grid
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that survives thresholding and then flooding the regions
surrounding those voxels. If a flooded feature contains more
than 1000 nonempty voxels, then morphological closing via
dilation and erosion is performed to fill small holes. The filling
of small holes ensures the skeletonization can be performed
efficiently. If a feature has fewer than 1000 voxels, that feature
is removed from future cloud-seeking iterations. This ensures
that small, spurious features are not analyzed. Significant
features are then skeletonized using FilFinder. The skeleton
length and total feature mass are derived, and if a skeleton’s
total length is greater than 20 pc the skeleton is kept for future
analysis. A 20 pc minimum length is chosen as the approximate
lower bound due to the range of lengths observed for molecular
clouds in the solar neighborhood (Zucker et al. 2021). See
Figure 1 for a visual of the cloud identification and
skeletonization process.

The simulated clouds can also be sorted based on whether or not
they are forming stars. We flag star-forming clouds by iterating
over each cloud and determining if there are any “star-forming
sinks” (see sink particles introduced in Section 2) inside the cloud
mask. If a cloud contains any star-forming sinks it is labeled as a
star-forming cloud. This specification allows for a better cross-
comparison between subsets of simulated clouds and the observed
clouds in Zucker et al. (2021), which are all star-forming.
Specifically, Zucker et al. (2021) analyzed a subset of clouds from
the Star Formation Handbook (Reipurth 2008a, 2008b), which
summarizes the 60 most important star-forming regions within 2
kpc of the Sun. We refer readers to Reipurth (2008a, 2008b) for
more information on the star-forming properties of the observed
clouds.

3.3. Simulated Cloud Analysis Pipeline

Once we extract a set of skeletons following the procedure
outlined in Section 3.2, we then calculate normal vectors
between skeleton points in order to define cloud-bisecting
planes to derive radial profiles. This is accomplished by fitting
a linear spline to the skeleton points (a function that connects
individual points with piecewise linear functions), from which
the first-order Cartesian derivatives for each point in the
skeleton are derived. These derivatives are used to define a

normal vector pointing from the current point being analyzed to
the next ordered point in the skeleton via 1, ,dy

dx

dz

dx
( )- - - . This

normal vector is used to define a circular 2D plane with a radius
of 20 pc that cuts through the current point being analyzed and
is orthogonal to the direction of the skeleton (see Figure 2).
An integral difference to the analysis done in Zucker et al.

(2021) and this work is that the simulation grids have access to
more information than the dust density that was converted to the
total hydrogen gas density using a wavelength-dependent
extinction curve. The slices defined herein are purely geometric
in Cartesian space and do not encode any density or temperature
information. We apply the slices to the simulation grid in order to
extract and interpolate information on the density (nHtot, nCO, nH2,
nHI

, and nH+) and gas temperature (Tgas). We then derive radial
profiles for each tracer. On a slice-by-slice basis the radial profile
for each tracer is computed. We do this by first defining 40 radial
distance bins (radius of 0–20 pc extending from the skeleton point
with steps of 0.5 pc). For each radial distance bin we compute the
median of the density and temperature values (see Figure 2). This
process is repeated for each skeleton point and results in a set of
radial profiles for each skeleton point in a cloud. Finally, each
individual radial profile is averaged to obtain the cloud-averaged
radial volume density profile of each chemical tracer as well as
temperature profiles (Figure 3). In this work, only the skeleton
points which have core values (taken from the first radial bin)
greater than the density threshold mask (n 35 cmH

3
tot >

- ) are
included in the computation of the cloud average radial profiles to
ensure we are not including spurious low-density patchy regions
which may dilute the averaged profile.
The total gas density (nHtot) radial profiles can be used directly

as a basis for comparison with observations, since all 3D
observational data from Zucker et al. (2021) are converted from
the native units of the 3D dust map to nHtot. If a simulated cloud’s
total gas density radial profile is comparable to observations, a
mapping can be formulated from nHtot to the chemical and
temperature profiles. This mapping can be then applied to
observed radial profiles to test whether or not a chemical or
temperature phase transition is occurring within a cloud.
Slices that bisect the cloud serve a dual purpose. In addition to

providing a tool by which radial profiles can be extracted, they also
provide a visualization of the morphology of a cloud. Comparative

Figure 1. Example of cloud identification and skeletonization for a single simulation subgrid. The 3D grid is displayed with one axis collapsed. The first panel
displays the total volume density of hydrogen nuclei in the grid. The second panel displays the same simulation grid after applying a density threshold mask of
n 35 cmH

3
tot >

- , which is used to identify potential clouds. The third panel displays the resulting topological skeletons. Small clouds present in the second panel are
removed from the data set and are not skeletonized. (Grid x1465y1400z1400.)
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analysis between simulated cloud and observed cloud 3D
morphology can be advantageous for diagnosing discrepancies
between simulations and observations. The methodology above
computes radial profiles by taking the median across radial bins, a
process which relies on the assumption of radial symmetry. If a
cloud is highly asymmetric, taking the median of density values in
a radial bin will not accurately capture cloud structure.
Additionally, if the simulated clouds’ average radial density
profiles for the total gas density are not matching observations,
there is no clear method by which to diagnose potential differences
between simulated clouds and observations. To provide a tool to
diagnose visually why simulated clouds may not be consistent with

observations, the pipeline also outputs slices in each tracer and
converts them into animations for visual analysis.

3.4. Fitting Data

Once we extract the cloud-averaged radial density profiles for
the sample for all tracers (nHtot, nCO, nH2, nHI

, nH+, and Tgas),
8 we

perform single and multicomponent Gaussian fits to the density

Figure 2. Graphical demonstraion of the analysis pipeline. (a) Zoom-in view displaying the normal vector pointing between skeleton points. This normal vector is
used to define a plane that bisects the cloud. (b) Zoom-in display of the 20 pc “slice” around a single skeleton point, which is then split into 0.5 pc radial bins and used
to derive an average radial density profile for one skeleton point.

Figure 3. Deriving the cloud average radial volume density profile for an entire cloud. Density slices are computed for each skeleton point. The radial volume density
profile for each skeleton point is derived and then averaged to construct a cloud-averaged radial volume density profile. Slices shown are from an observed molecular
cloud (Perseus; Zucker et al. 2021) and individual radial volume density profiles are exaggerated.

8 The pipeline is also designed to run on the dust temperature data, Tdust.
However, we do not consider Tdust for further analysis, since it is represents the
effective cooling from the dust.
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tracers. We also perform sigmoid, as well as spline fits, to the
gas temperature profiles.

We fit the gas temperature radial profile of each cloud to
investigate the radial distance at which atomic gas is mostly
CNM, mostly UNM, and mostly warm neutral medium
(WNM). From Wolfire et al. (2003), atomic gas is in the
CNM phase at 20–500 K and the WNM phase at 3000–8000 K.
We therefore use the temperature profile fit to place markers at
Tgas∼ 250 K and Tgas∼ 3000 K as the temperatures where
atomic gas is “mostly” CNM and “mostly” WNM. We tested
both sigmoid and spline fits to the temperature profiles. Due to
cloud asymmetries, we found that the average temperature
profile had large scatter and that sigmoid fits were incorrectly
placing temperature markers. We opt to utilize the spline fit to
determine more confidently which radial distance corresponds
to Tgas= 250 K and Tgas= 3000 K in the temperature radial
profile.

We fit the one- and two-component Gaussians to all density
tracers. For the single-component Gaussian fit, our model is
defined as:

⎜ ⎟
⎛
⎝

⎞
⎠

n r a
r

exp
2

, 1X

2

2
( ) ( )

s
=

-

where nX is the volume density of tracer X, r is the radial
distance (units of pc), a is the amplitude (peak density, units of
cm−3) and σ is the standard deviation (units of pc). The one-
component fits were performed with a Levenberg–Marquardt
least-squares fitter. For the two-component Gaussian fit, our
model is defined as:

⎟ ⎜ ⎟
⎛

⎝
⎜

⎞

⎠

⎛

⎝

⎞
⎠

n r a
r

a
r

exp
2

exp
2

, 2X 1

2

1
2 2

2

2
2

( ) ( )
s s

=
-

+
-

where a1 and σ1 and a2 and σ2 are the amplitudes and standard
deviations of the inner and outer Gaussians, respectably. The
two-component fits were performed utilizing a sequential least-
squares optimization algorithm. In Zucker et al. (2021) the first
2 pc are excluded from the fit since optical stellar photometric
and astrometric measurements (the key ingredients in 3D dust
mapping) become either scarce and/or unreliable in the core of
clouds due to high levels of dust extinction. From the
simulations we have access to core information without having
to consider dust extinction. However, in order to ensure the
best basis of comparison with observations we exclude the first
2 pc from our fits as well. The results stay consistent regardless
if we include or exclude the inner 2 pc. We emphasize that the
cloud average radial nH+ profile is always a poor fit since
ionized hydrogen has a radial profile with a nonzero center,
which we do not take into account with our fits and is beyond
the scope of this work.

We found that the choice to use a maximum number density
of molecular gas and atomic gas to differentiate between
molecular and atomic clouds was incorrectly flagging clouds.
The atomic gas number density (nHI

) in the cores of Cloud
Factory–simulated clouds is on par with the molecular gas
number density (nH2; see the core density values in the
Appendix, Figure A1). We decide to utilize the star-forming
subset of simulated clouds as a better basis of comparison with
observed clouds because all molecular clouds analyzed in
Zucker et al. (2021) are known to be star forming.

The pipeline we describe here is publicly available and open
source on GitHub. We include two versions of the pipeline: a
Cloud Factory–specific version that loops over the Cloud
Factory simulation grids, and a version that takes in a single 3D
grid (observational or simulated) and performs the above
analysis on whatever tracer the grid uses. Example notebooks
and data are included so that simulators and observers can run a
similar analysis on their own data.

4. Results

4.1. Ensemble Results

We applied the pipeline described in Section 3 to nine
simulation subgrids with an appreciable amount of molecular
gas and analyzed 125 clouds in total with 36 being flagged as
star forming based on the presence of sink particles within
their cloud masks. Out of the 36 star-forming clouds, only
24 had two-component Gaussian fits that successfully con-
verged (see Section 4.2 for details; 11 clouds failed to converge
with σ1,2∼ 0 pc while one cloud was an outlier with a1�
100 cm−3). The ensemble results for the two-component
Gaussian fits to the nHtot distributions of the 24 simulated star-
forming clouds are shown in Figure 4, alongside the observed
solar neighborhood clouds from Zucker et al. (2021). The
Gaussian peaks (a1 and a2) for simulated clouds (∼50 and
∼8 cm−3) agree mostly with observations (∼30 and ∼9 cm−3)
by construction: recall that the same density threshold that was
used to define observational skeletons was used to find
clouds in the simulations. Simulated clouds deviate from
observations for the remainder of the two-component Gaussian
fit parameters. The most striking difference is the inner and
outer Gaussian widths (σ1 and σ2, respectively) for simulated
star-forming clouds and observations. The widths for both the
inner and outer Gaussians of the simulated star-forming clouds
have lower values than observations. The Gaussian widths
(σ1 and σ2) respectively extend out to ∼3 and ∼11 pc in the
observations but only extend out to ∼2 and ∼5 pc in the
simulations.
Ensemble nHtot two-component and one-component Gaussian

fits, as well as cloud length, mass, and nCO, nH2, and nHI
one-

component Gaussian fits are highlighted in Table 1. Modeling
uncertainties in the simulated cloud radial profile fits is
difficult; there are no intrinsic uncertainties stemming from
the simulations and any “uncertainty” in the reported fits would
be due to the variations in the profiles on a slice-by-slice basis.
We instead opt to report estimates of the population-level
spread in the distribution of each reported value in Table 2.
The ensemble two-component Gaussian fit results are the

first indication that the simulated clouds are not aligning with
observational expectations. In particular, the width of the first
Gaussian σ1 indicates that the inner peaks of the simulated
cloud radial profiles are thinner than the observed radial profile
peaks, and the width of the second Gaussian σ2 indicates that
the tails of the simulated cloud radial profiles are falling off
much faster than the observed radial profile tails. In order to
diagnose the discrepancy between simulations and observa-
tions, we analyze the radial profiles and morphologies of
specific clouds in detail.

4.2. Individual Cloud Examples

As a basis for comparison with the observational data, we
apply our pipeline to the local Perseus molecular cloud, whose
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Table 1
Properties of the Simulated Star-forming Clouds

Grid # Cloud # Length Mass # Sinks nHtot nCO nH2 nHI

a1 σ1 a2 σ2 a σ a σ a σ a σ

(pc) (Me) (cm−3) (pc) (cm−3) (pc) (cm−3) (pc) (cm−3) (pc) (cm−3) (pc) (cm−3) (pc)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

x1465y1390z1400 0 545 322,558 77 54.0 2.1 6.6 6.5 50.0 2.7 1.9e–06 1.0 21.0 2.4 10.0 1.0
x1465y1390z1400 3 87 18,735 9 54.0 1.0 13.0 3.6 16.0 3.3 2.9e–09 1.7 4.6 3.2 7.2 1.7
x1465y1390z1400 4 225 37,483 15 69.0 1.1 18.0 3.9 27.0 3.2 1.3e–07 1.5 12.0 3.0 2.4 1.5
x1465y1390z1400 12 191 25,118 1 42.0 1.9 3.2 5.9 38.0 2.2 6.1e–09 1.2 3.8 1.8 31.0 1.2
x1470y1400z1395 4 76 5812 1 23.0 2.6 9.5 2.6 33.0 2.6 3.6e–09 1.6 10.0 2.2 19.0 1.6
x1465y1405z1395 8 169 63,898 3 58.0 2.0 3.1 7.1 54.0 2.2 2.4e–08 1.2 3.8 1.7 47.0 1.2
x1475y1390z1395 0 46 6882 5 72.0 1.3 24.0 3.6 45.0 2.7 5.7e–06 0.6 1.8 1.5 41.0 0.6
x1475y1390z1395 2 101 19,255 2 79.0 1.5 19.0 4.9 44.0 3.1 6.6e–07 1.0 12.0 2.3 24.0 1.0
x1475y1390z1395 4 313 75,488 3 32.0 2.5 13.0 5.9 36.0 3.7 4.4e–07 1.1 7.2 3.3 17.0 1.1
x1475y1390z1395 8 37 5176 1 30.0 2.0 1.7 7.1 28.0 2.3 5.1e–09 1.7 12.0 2.0 7.0 1.7
x1475y1390z1395 18 18 48,825 19 57.0 1.7 9.0 4.7 44.0 2.4 9.8e–04 0.6 21.0 2.2 3.3 0.6
x1475y1390z1395 22 122 19,959 8 54.0 1.4 12.0 3.8 49.0 1.9 2.2e–04 0.5 540.0 0.7 19.0 0.5
x1465y1400z1400 3 33 15,656 5 86.0 2.1 9.8 5.9 80.0 2.6 5.8e–03 1.7 0.0 2.2 80.0 1.7
x1465y1400z1400 13 43 3039 1 48.0 1.2 14.0 2.9 29.0 2.2 6.5e–08 0.6 3.3 1.1 23.0 0.6
x1465y1400z1400 18 69 10,210 3 40.0 1.9 3.3 6.3 35.0 2.3 4.6e–09 1.4 13.0 1.8 16.0 1.4
x1465y1400z1400 23 125 23,166 19 36.0 1.6 6.4 4.7 26.0 2.5 6.0e–08 1.1 13.0 2.4 0.7 1.1
x1470y1400z1400 1 36 2294 1 49.0 1.7 6.1 1.7 55.0 1.7 1.8e–07 0.8 34.0 1.3 10.0 0.8
x1465y1405z1400 0 207 47,893 8 78.0 1.4 9.3 4.4 47.0 2.2 3.0e–07 0.8 9.5 1.9 26.0 0.8
x1465y1405z1400 4 128 33,625 2 69.0 1.9 6.3 8.7 56.0 2.5 2.1e–07 1.8 12.0 2.0 31.0 1.8
x1465y1405z1400 8 21 1306 1 45.0 1.7 0.9 6.5 43.0 1.8 2.1e–08 1.0 17.0 1.8 4.5 1.0
x1465y1405z1400 14 48 37,131 7 27.0 3.2 9.3 3.2 36.0 3.2 1.1e–06 1.2 6.3 3.2 21.0 1.2
x1465y1405z1400 18 34 4622 1 15.0 1.2 6.1 5.0 7.4 4.5 3.8e–10 2.0 1.1 3.8 4.6 2.0
x1465y1405z1400 28 41 4239 3 36.0 1.7 5.7 5.7 26.0 2.6 3.2e–09 1.4 8.1 2.3 8.9 1.4
x1475y1390z1400 5 96 5630 1 30.0 2.1 5.3 4.2 30.0 2.5 9.5e–09 1.1 6.2 2.4 19.0 1.1

Note. Skeletonizing and analysis pipeline results for star-forming clouds in the Cloud Factory feedback-dominated suite of simulations. (1) Grid number identifier. (2) Cloud number identifier (each skeletonized cloud in
one simulation grid is given an identifying number). (3) Length and (4) mass of each cloud. (5) Number of star-forming sinks in each cloud. Two-component Gaussian fit (amplitudes a1 and a2 and standard deviations σ1
and σ2) results to the column (6–9) nHtot radial profiles. One-component Gaussian fit (amplitude a and standard deviation σ) results to the column (10–11) nHtot, (12–13) nCO, (14–15) nH2, and (16–17) nHI radial profiles.
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Table 2
Population Statistics

Type Length Mass nHtot nCO nH2 nHI

a1 σ1 a2 σ2 a σ a σ a σ a σ

(pc) (Me) (cm−3) (pc) (cm−3) (pc) (cm−3) (pc) (cm−3) (pc) (cm−3) (pc) (cm−3) (pc)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Simulated Star-forming 81.5 46.1
114.6

-
+ e1.9 4 e

e
1.4 4
2.9 4

-
+ 48.5 18.5

21.5
-
+ 1.7 0.4

0.4
-
+ 7.8 4.5

5.5
-
+ 4.8 1.3

1.7
-
+ 37.0 10.3

14.3
-
+ 2.5 0.3

0.7
-
+ 9.8e 8 9.3e 8

3e 6- - -
+ - 1.2 0.4

0.6
-
+ 9.8 6.1

8.5
-
+ 2.2 0.6

0.9
-
+ 18.0 13.4

13.0
-
+ 1.2 0.4

0.6
-
+

Simulated Non–star-forming 36.0 16.0
45.0

-
+ e2.3 3 e

e
1.3 3
6.2 3

-
+ 38.0 13.0

18.0
-
+ 1.8 0.5

0.6
-
+ 9.2 5.6

6.6
-
+ 4.3 1.6

2.8
-
+ 34.0 11.8

14.0
-
+ 2.7 0.6

0.5
-
+ 5.5e 9 5.1e 9

8.1e 8- - -
+ - 1.1 0.4

0.6
-
+ 3.3 2.5

7.5
-
+ 1.9 0.5

0.6
-
+ 27.0 12.7

9.5
-
+ 1.1 0.4

0.6
-
+

Observations 62.0 20
14

-
+ e9.4 3 e

e
6.4 3
6.4 3

-
+ 31.3 2.0

10.9
-
+ 2.9 0.3

1.2
-
+ 9.2 0.4

2.4
-
+ 10.9 1.7

2.6
-
+ 30.8 1.7

10.2
-
+ 5.7 1.3

0.4
-
+ L L L L L L

Note. Summary table of the ensemble median cloud properties and their dispersions for the simulated star-forming and non–star-forming populations compared with observations. Each cell displays the median value
(50th percentile) with the lower (50th percentile – 16th percentile) and upper (84th percentile – 50th percentile) bounds. (1) Simulation type. (2) Length and (3) mass of the clouds. Two-component Gaussian fit
(amplitudes a1 and a2 and standard deviations σ1 and σ2) results to the column (4–7) nHtot radial profiles. One-component Gaussian fit (amplitude a and standard deviation σ) results to the column (8–9) nHtot, (10–11)
nCO, (12–13) nH2, and (14–15) nHI radial profiles.
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radial density profile based on the 3D dust data from Leike
et al. (2020) was originally analyzed in Zucker et al. (2021).
Figure 5 displays our pipeline’s results for Perseus. The two
radial profile plots display the two-component Gaussian and
single-component Gaussian fit to Perseus’ radial profile. The
gray points in the figure represent the slice-by-slice radial
profiles that are averaged to compute the cloud-averaged radial
volume density profile, represented by blue points since there is
no temperature information present in the observational data.
We also display multiple cross sections of the nHtot density of
Perseus taken along the skeleton. Our pipeline reproduces a
two-component Gaussian fit that traces the data better than the
single-component fit. Discrepancies between our fitted values
and the values found in Zucker et al. (2021) come from slightly
different modeling choices and that our pipeline does not take
into account errors intrinsic to the observations (see Section 5).

Figures 6, 7, and 8 display three exemplary simulated star-
forming clouds. The top panel displays the cloud’s location in
the simulation grid, the skeleton of the cloud, and the number
and location of star-forming sinks within the cloud. The bottom
panel displays the one- and two-component Gaussian fits to the
nHtot radial profiles, where the temperature is displayed as a
color bar and dotted lines demarcate the radial distances

corresponding to potential atomic gas thermal transition. Recall
that the nHtot radial profile is the only information we can
directly compare with the observational data, as there is no
observational information on the relative contribution from
atomic versus molecular hydrogen gas. For the simulations we
additionally include the radial profiles for molecular ( n2 H2´ )
and atomic nHI

gas densities alongside nHtot. We also include
two representative slices taken halfway through the cloud’s
skeletal length. These slices display the total gas density nHtot

and the gas temperature morphology.
The three exemplary fits display a wide variety of

morphologies. Figure 6 shows a sheet-like cloud, Figure 7
shows a radially asymmetric cloud, and Figure 8 shows a cloud
that is approximately radially symmetric. However these three
fits display a common theme found in all clouds in the
simulation: in general, the two-component Gaussian fit does
not trace the data better than a single-component fit.
Additionally, consistent with the small outer Gaussian width
(σ2) common across the entire ensemble of simulated clouds
found in Figure 4, the radial profiles for the example simulated
clouds fall off to ∼0 cm−3 more quickly than Perseus’ profile
(Figure 5). This trend is even more evident in the representative
slices, which all display a lack of an extended gas envelope.

Figure 4. Corner plot comparing the two-component Gaussian fits of observed clouds and simulated star-forming clouds. The diagonal shows a smoothed version of
histograms comparing the two sets of clouds. The cloud peak densities (a1 and a2) are largely consistent across the two data sets. However, the cloud widths (σ1 and
σ2) show more significant disrepancies.
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We find that the lack of an extended gas envelope is a common
feature across the entire sample of clouds.

While simulated non–star-forming clouds cannot be directly
used to disentangle the precise thermal and chemical phase
structure of observed star-forming clouds analyzed in Zucker
et al. (2021), they can elucidate properties that are common
within the entire simulation grid. The ensemble results
including the entire sample size are shown in Table 2 and in
Figure A2 in the Appendix. The majority of non–star-forming
clouds displays similar properties to the star-forming ones for
all Gaussian fit parameters. In particular, the Gaussian widths
(σ1 and σ2), extend out to ∼2 and ∼5 pc, respectively, for the
majority of the simulated clouds. A small subset of non–star-
forming clouds do display larger σ2 widths (�10 pc). These
clouds, while not star forming, tend to be found in very dense
regions of the simulation grid and provide an interesting subset
of clouds that we defer to future investigation.

5. Discussion

From the slice visuals in the three exemplary fits, we
determine that the poor two-component Gaussian fits to the
nHtot radial profiles are due to radial asymmetry and the lack of
an extended envelope. All three figures (Figures 6, 7, and 8)
display the lack of an extended envelope and Figures 6 and 7
display radial asymmetry. The lack of an extended envelope
presents itself as a rapid falloff to ∼0 cm−3 at ∼10 pc in the
cloud average radial volume density profiles. Radial asymmetry
presents itself as a larger scatter of gray points in Figures 6 and
7, with the gray points being representative of the individual
slice-by-slice radial profiles that are averaged to compute the
cloud-averaged radial volume density profile.

We turn to a more extreme example of asymmetry in a
simulated star-forming cloud in Figure 9. This cloud displays
radial asymmetry and lacks an envelope to such an extreme
extent that the two-component Gaussian fit fails to converge.
Asymmetry in this case causes the radial profile to take on a
more exponential shape than a Gaussian profile. We can
compare the density slice of this cloud to the density slices for
Perseus. Perseus’ density slices display approximate radial
symmetry and a gas envelope that extends past 20 pc. The
log(Tgas) slices map onto the log(nHtot) slices quite well and we
identify a temperature front that can exceed ∼106 K mapping
onto regions of the cloud with ∼0.001 cm−3 density. In the
Cloud Factory simulations there is a constant UV background
that acts as a source of background heating. The resultant
temperature field is driven by density variations where lower-
density gas is hotter due to being less shielded from the ISRF.
This example is in agreement with the asymmetric cloud in
Figure 7. This cloud also displays a temperature front that maps
onto the density structure, albeit a much colder one due to the
skeleton tracing a part of the cloud that is being shielded.
Similar temperature fronts map to regions of lower density in
both Figures 6 and 8.
The lack of an extended gas envelope could be due to two

factors: (1) too strong supernova feedback in comparison to the
solar neighborhood or (2) a lack of magnetic fields, which
would help keep clouds together (see, e.g., the discussion in
Ganguly et al. 2023). Supernova feedback injects both thermal
energy and momentum into the ISM and could be the cause of
the low-density envelopes, and therefore the low σ2 values. To
probe for a potential cause we repeated the experiment on one
grid of the potential-dominated suite of the Cloud Factory

Figure 5. Cloud-averaged radial volume density (nHtot) Gaussian fits for Perseus for the two-component (left panel) and single-component (middle panel) fits, shown
alongside the density slices taken at six different positions along the skeleton (right panel). In the left and middle panels, the blue dots display the averaged radial
profile, while the gray points indicate the variation in the radial profiles from slice to slice. The red line shows the best-fit function, which for the two-component
Gaussian consists of inner (black dotted line) and outer (cyan dotted line) components. The inner 2 pc, where the 3D dust observations are unreliable, have been
grayed out. The best-fit values for the two-component Gaussian fit (the inner and outer Gaussian widths σ1 and σ2, respectively, and their corresponding amplitudes a1
and a2) and the single-component Gaussian fit (the width σ and amplitude a) are summarized at the top. As can be seen in the right panel, the slices display radial
symmetry as well as an extended gas envelope.
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simulations, where supernova feedback is less prominent and
the large-scale gravitational potential largely dictates the gas
dynamics. The resultant cloud profiles were predominately
sheet-like and displayed the same lack of extended gas
envelopes. We display 2D representations of feedback-
dominated and potential-dominated grids, as well as six
different cloud morphologies from both grids, in Figure A3
in the Appendix. This result gives credence to magnetic fields
being responsible for the lack of extended envelopes; however
we leave a more detailed comparison between feedback and
potential-dominated grids to future studies.

Our finding is in agreement with the work performed by
Ganguly et al. (2023). Ganguly et al. (2023) utilized SILCC-
Zoom simulations (Seifried et al. 2017), which include
magnetic fields, self-gravity, supernova feedback, and none-
quilibrium chemistry to study the effect of magnetic fields on
molecular clouds. They found that the molecular clouds in their
subset of simulations with magnetic fields contained more mass
in their diffuse envelopes than clouds without magnetic fields.
They additionally found that magnetic fields as a whole are
more important for less dense structures. This result provides
evidence that the lack of magnetic fields in the Cloud Factory
suite may be driving the lack of extended envelopes in the
simulated clouds.

To summarize: clouds in the feedback-dominated suite of the
Cloud Factory simulations display a lack of extended envelope,
a finding also shared by a subset of clouds in the potential-
dominated suite. Star-forming clouds in the feedback-domi-
nated case can be radially asymmetric filaments (Figures 7 and
9), symmetric filaments (Figure 8), or sheet-like (Figure 6) with
a majority of the clouds being radially asymmetric. Star-
forming clouds in the potential-dominated case are solely
sheet-like. We propose that the lack of magnetic fields in
combination with the constant UV background radiation is
driving the lack of low-density envelopes in both simulation
suites. That is, the lack of envelopes in both suites is due to
clouds not being able to hold themselves together against the
constant UV radiation field, thereby destroying the extended
low-density envelopes. Additionally we argue that a combina-
tion of the galactic potential and supernova feedback is driving
the cloud morphologies; the radially asymmetric profiles in the
feedback-dominated suite is due to supernova feedback
dominating, while sheet-like structures is due to potential
forces dominating.
Our results are independent of modeling choices. We

revisited the choice of restricting our analysis to clouds with
lengths greater than 20 pc (Section 3) by rerunning the pipeline
with the opposite criterion (restricting the analysis to clouds
less than 20 pc) for a single feedback-dominated grid. We find

Figure 6. Sheet-like simulated cloud (grid x1465y1400z1400, cloud 23) with 19 star-forming sinks. In the top panel, we show the projected density field thresholded
at a level of nHtot � 35 cm−3 (top left panel) alongside the cloud’s mask and skeleton (top middle panel) and the locations of star-forming sinks (crossed points) within
the cloud (top right panel). The bottom panel displays the cloud-averaged radial volume density (nHtot) Gaussian fits to the simulated cloud with two-component
(bottom, left panel) and single-component (bottom, middle panel) fits. In the bottom left and bottom middle panels, the colored points display the averaged radial
profile with the average gas temperature at that radial distance (color bar), while the gray points indicate the variation in the radial profiles from slice to slice. The red
line shows the best-fit function, which for the two-component Gaussian consists of inner (black dotted line) and outer (cyan dotted line) components. The inner 2 pc,
where the 3D dust observations (see Figure 5) are unreliable, have been grayed out. The vertical dotted lines indicate temperature transitions from CNM to UNM
(∼250 K, blue dotted line) and UNM to WNM (∼3000 K, red dotted line). The bottom right panel shows the nHtot two-component Gaussian fits (with the inner and
outer components) compared to the single-component Gaussian fits for nH2 (orange) and nHI (green). The far right panels show representative density and temperature
slices taken midway across the skeleton. As can be seen in the right panel, the slice morphology is much different than that found in Figure 5.
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that these small simulated clouds have similar morphologies to
the longer clouds but—due to their radial profiles only having
20 slices—the shorter clouds displayed significantly more

scatter in their averaged profile. We additionally analyzed the
effect of including a “shift” of the cloud center from the
topological center to the densest region within the cloud’s

Figure 7. Same as Figure 6, but for an asymmetric cloud with 77 star-forming sinks. (Grid x1465y1390z1400, cloud 0.)

Figure 8. Same as Figure 6, but for a symmetric cloud with five star-forming sinks. (Grid x14751390z1395, cloud 0.).
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mask, ensuring that the density peaks at a distance of 0 pc. This
“shift” was explored in both Zucker & Chen (2018) and Zucker
et al. (2021). Including this shift does not impact our main
result, as the effect of slice-by-slice differences and cloud
morphology impacts the resultant radial profile more pro-
foundly. We note that shifting remains an option in the
pipeline, and can be pertinent when specifically analyzing peak
densities and width values in radial profiles of observations and
simulations.

We finally revisit our assumption of radial symmetry when
extracting radial profiles from each 20 pc slice. Due to the
diversity of cloud morphologies found in the simulations,
assuming radial symmetry is not appropriate for asymmetric
and sheet-like clouds and new methods must be utilized to
examine the density structure of these clouds. Departing from
radial symmetry is outside of the scope of this work, and is why
the pipeline provides slices as a tool to analyze whether radial
symmetry is a good assumption or not.

In comparison to this work, Zucker et al. (2021) performed a
Bayesian model comparison to show that a two-component
Gaussian fit was preferred over other models, including a
single-component Gaussian fit. Given that the simulations do
not match observations, a similar Bayesian model comparison
for the simulated cloud radial profiles is beyond the scope of
this work. However, we note that the pipeline we present here
should have broad potential applications, and more sophisti-
cated Bayesian modeling of the extracted radial profiles can be
applied to future simulations that include additional physics.

As shown in Figures 6, 7, 8, 9, and Appendix Figure A1, the
total gas density, chemical composition, and temperature radial
profile slices map onto each other quite well. In the future, if

simulated clouds better reproduce the extended envelopes seen
in nearby observed clouds, radial profile slices of both
temperature and other density tracers can be better inferred
from the total gas density profiles. We would then be able to
extrapolate additional information of the observed clouds from
their total gas density, and test the radial distances at which
local molecular filamentary clouds may exhibit thermal and/or
chemical phase transitions.
We turn to a final example in Figure 10. This cloud has a

symmetric radial morphology and contains no star-forming
sinks. This cloud is still noteworthy within the broader sample
since even though it is not star forming, it contains more
molecular gas in the inner few parsecs than atomic gas. This
cloud could be in the precursor stages of star formation.
Tracking the evolution of morphology and chemical composi-
tion of clouds like these over time can elucidate the life cycle of
a molecular cloud as it transitions from non–star forming to star
forming, which we defer to future work.

6. Conclusion

We present a technique to extract and analyze clouds in
resolved simulations of the ISM for the purpose of comparing
to 3D observational data. We first extend the cloud identifica-
tion and skeltonization methodology presented in Zucker et al.
(2021) to search simulation grids for cloud-like structures. The
radial profiles of clouds along their topological skeletons are
then computed for multiple tracers. Density radial profiles are
fit using one-component and two-component Gaussians and
temperature radial profiles are fit using sigmoid and spline

Figure 9. Same as Figure 6, but for an asymmetric cloud with four star-forming sinks. The two-component Gaussian fit failed due to an exponential-like radial profile.
This failure likely stems from the assumption of radial symmetry in the derivation of the averaged radial profile. (Grid x14651400z1400, cloud 8.).
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profiles. 2D slices along the skeleton are also computed to
serve as a visualization of cloud morphology.

We apply the pipeline to the Cloud Factory feedback-
dominated suite of simulations to extract radial profiles of two
dozen star-forming clouds. We find that the simulated clouds
are primarily radially asymmetric and lack low-density
envelopes. In line with recent work (e.g., Ganguly et al.
2023), we propose that the lack of low-density envelopes is due
to the lack of magnetic fields. We additionally propose that the
radially asymmetry morphologies are due to supernova feed-
back. Initial tests indicate that clouds in the Cloud Factory
potential-dominated suite of simulations are primarily sheet-
like and also lack low-density envelopes, giving credence to the
common lack of magnetic fields in both suites driving the lack
of low-density envelopes and supernova feedback is driving the
radially asymmetric morphologies. Future work will investigate
the differences between the feedback- and potential-dominated
suites in more detail, and compare the Cloud Factory clouds to
clouds in other simulations.

New observational techniques that probe the 3D structure of
local star-forming clouds provide an exciting new avenue
by which simulations can be used to detangle the physical
conditions occurring in observed clouds. We show that there is a
current discrepancy between the 3D structure of clouds in
hydrodynamic simulations and observations. Future iterations of
the Cloud Factory suite will include magnetic fields (as in, e.g.,
Ganguly et al. 2023) and track cloud formation and evolution over
time. On the observational front, there are new 3D dust maps being
developed (e.g., Edenhofer et al. 2023) that extend to larger
distances. These new 3D dust maps will allow for opportunities to

characterize cloud morphologies over a more diverse range of
galactic environments. The cloud identification and analysis
pipeline we present here provides a tool for future exploration of
simulated and observed 3D cloud structure and is publicly
available on Zenodo doi:10.5281/zenodo.10157333 and https://
github.com/elijah-mullens/Skeletonizing-and-Analyzing-Pipeline-
for-3D-Interstellar-Cloud-Ensembles GitHub (Skeletonizing and
Analyzing Pipeline for 3D Interstellar Cloud Ensembles).
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Appendix

Figure A1 shows example slices from multiple tracers. We
found in Section 3.4 that the choice to use maximum number
density of molecular gas and atomic gas to differentiate clouds
was incorrectly flagging clouds due to atomic gas being on par
with molecular gas density in the cores of clouds. We therefore
utilized star-forming clouds in our analysis. This figure also
shows that the total gas density maps onto the chemical

Figure 10. Same as Figure 6, but for a symmetric cloud with no star-forming sinks. Due to the high density of molecular gas, this cloud could be in the precursor
stages of star formation. (Grid x14701400z1395, cloud 3.)
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Figure A1. Example slices taken from multiple tracers (nHtot, nH2, nHI , nH+, and Tgas) midway along a skeleton. Once simulations can more faithfully reproduce the
extended structure of gaseous envelopes observed in the solar neighborhood, we should be able to map these tracers on to the total hydrogen volume density to
determine the radial distances at which chemical and/or phase transitions occur.

Figure A2. Same as in Figure 4, but with the inclusion of clouds with no star-forming sinks.
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composition and temperature radial profiles, allowing for
simulations to produce mappings from observed total gas
density to other tracers once simulations map observations
better.

Figure A2 shows the ensemble results of the entire sample
size, specifically with the inclusion of non-star forming clouds
and served as a point of comparison with Figure 4. These
clouds display similar properties to star-forming clouds.

Figure A3 displays the difference between feedback- and
potential-dominated grids, and show that magnetic fields might
be the reason for the lack of extended envelopes in the
simulations.
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