149 research outputs found

    Farmer Experiences With Alfalfa in the Southern U.S.A.

    Get PDF
    Alfalfa (Medicago sativa L.) is a forage crop of primary importance in the United States (USA); however, adoption and use in the southern USA region has been limited. The combination of adapted alfalfa cultivars and management strategies which demonstrate extended forage growing season length, improved forage nutritive value, and reduced N fertilizer inputs have renewed interest in forage-livestock farmers to consider planting alfalfa. A series of Extension-based educational strategies have been used in the southern USA to 1) create awareness on the use of alfalfa, 2) educate farmers regarding establishment and management practices, and 3) showcase opportunities and challenges of on-farm alfalfa use in the region. Educational initiatives included on-farm demonstrations and farmer testimonials, field days, integrated lecture and field-based workshops, and web-based content delivery. Across multiple educational methods, farmers reported increased awareness and understanding of management requirements to incorporate alfalfa into their operation. However, on-farm management challenges were also noted as the primary reason of hesitance towards adopting alfalfa in the region. Targeted education to farmers with a greater level of familiarity regarding stand management requirements, such as dedicated hay growers or row crop operators, were identified as audiences where alfalfa may be more readily adopted. Continuing education areas to demonstrate value of alfalfa include an emphasis on timeline for breakeven economic returns following establishment and ecosystem benefits of using legumes in forage management systems

    Development of Forage Curriculum for Extension Educators in the Southeast USA

    Get PDF
    In the Southeast USA, livestock production is one of the largest agricultural activities, and forages are the primary feed source. Most livestock systems are highly dependent on off-farm inputs to support forage production and animal performance, which elevates production costs and the activity\u27s carbon footprint. There is a strong need to develop forage educational resources to enhance productivity, environmental sustainability, resilience, and profitability of agricultural systems in the region. This multi-disciplinary initiative was a collaboration among several land-grant Universities across the region. The objective was to develop decision tools and provide in-classroom training associated with hands-on demonstrations to Extension agents and agricultural educators in the Southeast. A textbook was developed for the two-day training, and the in-person program was held in Columbiana, AL, through a collaboration among 20 Specialists from several land-grant Universities. The book included basic concepts and management strategies for forages, livestock (e.g., beef, horse, small ruminants), soil, economics, nutrient management, animal genetics, and marketing strategies for forage-based systems. There were 62 participants from Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, and Tennessee. The majority of the participants were Extension agents or educators, and close to half of them had been in the job position for less than five years (n= 28 participants). A significant emphasis was set on newer agents` participation aiming to allow them to address gaps in knowledge. The training sessions supported critical thinking and deepening of knowledge and network. Post-training surveys were applied to gather change in knowledge and feedback from participants and identify potential barriers to be used in structuring future curriculum development and trainings. Regional joint efforts can be a tool to address multi-disciplinary training while incentivizing collaboration across regions for Specialists and agents through their programming activities

    Evaluation of Limpograss (\u3cem\u3eHemarthria altissima\u3c/em\u3e) Breeding Lines under Different Grazing Managements

    Get PDF
    Limpograss (Hemarthria altissima (Poir.) Stapf et C.E. Hubb.) is a stoloniferous, warm-season perennial grass from South Africa. It is frequently used to extend the grazing season in poorly drained soils of subtropical regions (Quesenberry et al. 2004). The cold tolerance of limpograss allows it to grow at temperatures below which other commonly used warm-season grasses (e.g. bermudagrass) remain productive. Use of limpograss has helped to reduce forage shortfall during winter, therefore, reducing feeding costs. In the past 30 years, the area planted to limpograss in Florida, USA has grown faster than that of any other forage grass species. It is estimated that over 0.2 million ha are planted to limpograss (Quesenberry et al. 2004). Recent University of Florida research with limpograss has focused on developing new hybrids which incorporate the persistence of the most widely used cultivar ‘Floralta’ with the digestibility of ‘Bigalta’. Preliminary clipping and grazing trials evaluated 50 breeding lines and identified 5 lines (designated 1, 4F, 10, 32 and 34) with superior performance. With an overall program goal of identifying the best limpograsses for cultivar release, the specific objective of this experiment was to investigate the forage productivity and sward canopy characteristics of these 5 breeding lines, compared to Floralta, in response to different grazing management strategies

    In Vitro Methane Production from Heifers Offered Four Bermudagrass Cultivars

    Get PDF
    Though bermudagrass (Cynodon dactylon [L.] Pers.) is one of the predominant warm-season perennial forage supporting the southeastern United States livestock production systems, little is known about its influence on parameters of ruminal metabolism, including carbon loss as methane. With the multitude of cultivars of this grass that have been developed and released, one may question whether the physiological cultivar differences will manifest varying results in digestive efficiency and subsequent methane emissions. Thus, the objective of this study was to evaluate in vitro methane (CH4) production as influenced by four bermudagrass cultivars. Ruminally-fistulated heifers (n = 4) were assigned randomly to one of four bermudagrass cultivars (Coastal [COS], Russell [RUS], Tifton 44 [T44], or Tifton 85 [T85]) for four 30-d in vivo periods in a Latin square design. On d 28 of each period, rumen fluid was collected from each heifer for use in CH4 production evaluation. Samples of each bermudagrass, corresponding to the cultivar fed, were weighed into duplicate 10-mL serum bottles and incubated at 39°C for 0, 2, 4, and 24 h. Following incubation, headspace samples were assayed for CH4 concentrations by gas chromatography. There was an interaction of cultivar and time (P \u3c 0.01). There was no difference among cultivars (P \u3c 0.05) at 0, 2, or 4 h of incubation. After 24 h of incubation, however, CH4 concentrations were greater (P \u3c 0.05) from T44 and T85 (7.7 and 6.2 mmol/L, respectively) than from RUS and COS (3.4 and 3.0 mmol/L, respectively). Results are interpreted to mean that cultivar type has an influence on the potential CH4 production of bermudagrass

    Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Get PDF
    BACKGROUND: Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. RESULTS: Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. CONCLUSION: The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings

    Public Good Overprovision by a Manipulative Provider

    Get PDF
    We study contracting between a public good provider and users with private valuations of the good. We show that, once the provider extracts the users' private information, she benefits from manipulating the collective information received from all users when communicating with them. We derive conditions under which such manipulation determines the direction of distortions in public good provision. If the provider is non-manipulative, the public good is always underprovided, whereas overprovision occurs with a manipulative provider. With overprovision, not only high-valuation users, but also low-valuation users may obtain positive rents—users may prefer facing a manipulative provider.Peer Reviewe

    Herbage Accumulation and Nutritive Value of Limpograss Breeding Lines Under Stockpiling Management.

    Get PDF
    Supplements or conserved forage are often used to overcome forage quantity deficits for beef cattle, but stockpiled forage can be more economical. Limpograss [Hemarthria altissima (Poir.) Stapf & C.E. Hubb.] is the best available species for stockpiling in Florida because it is productive in autumn and maintains greater digestibility than other grasses at advanced stages of maturity. New limpograss hybrid breeding lines have been developed, but they have not been tested under stockpiling. Three limpograss breeding lines (1, 4F, and 10) and the most-used cultivar, Floralta, received 50 or 100 kg N ha?1 at initiation of stockpiling and herbage accumulated for 8, 12, or 16 wk. Entry 4F had greater herbage accumulation (7.3 Mg ha?1) than Entries 10, 1, and Floralta (6.1, 6.0, and 5.4 Mg ha?1, respectively). Entry 4F also had greater in vitro digestible organic matter (IVDOM) concentration (530?594 g kg?1) than Entries 1 and Floralta, but 4F was not different from Entry 10 (519?531 g kg?1) after 12 and 16 wk of accumulation. As stockpiling period increased from 8 to 16 wk, herbage accumulation increased from 5.3 to 7.4 Mg ha?1, dead material proportion increased from 1 to 10%, and herbage crude protein (CP) decreased from 44 to 32 g kg?1. Limpograss hybrids 4F and 10 are superior to Floralta for stockpiling, stockpiling period should not be longer than 12 wk, and protein supplement will be required to achieve satisfactory animal performance on stockpiled limpograss

    Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Get PDF
    Background Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. Results Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. Conclusion The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings

    Serum IgE Reactivity Profiling in an Asthma Affected Cohort

    Get PDF
    BACKGROUND: Epidemiological evidence indicates that atopic asthma correlates with high serum IgE levels though the contribution of allergen specific IgE to the pathogenesis and the severity of the disease is still unclear. METHODS: We developed a microarray immunoassay containing 103 allergens to study the IgE reactivity profiles of 485 asthmatic and 342 non-asthmatic individuals belonging to families whose members have a documented history of asthma and atopy. We employed k-means clustering, to investigate whether a particular IgE reactivity profile correlated with asthma and other atopic conditions such as rhinitis, conjunctivitis and eczema. RESULTS: Both case-control and parent-to-siblings analyses demonstrated that while the presence of specific IgE against individual allergens correlated poorly with pathological conditions, particular reactivity profiles were significantly associated with asthma (p<10E-09). An artificial neural network (ANN)-based algorithm, calibrated with the profile reactivity data, correctly classified as asthmatic or non-asthmatic 78% of the individual examined. Multivariate statistical analysis demonstrated that the familiar relationships of the study population did not affect the observed correlations. CONCLUSIONS: These findings indicate that asthma is a higher-order phenomenon related to patterns of IgE reactivity rather than to single antibody reactions. This notion sheds new light on the pathogenesis of the disease and can be readily employed to distinguish asthmatic and non-asthmatic individuals on the basis of their serum reactivity profile
    corecore