5,166 research outputs found

    Multicomputer communication system

    Get PDF
    A local area network is provided for a plurality of autonomous computers which operate at different rates and under different protocols coupled by network bus adapters to a global bus. A host computer (HC) divides a message file to be transmitted into blocks, each with a header that includes a data type identifier and a trailer. The associated network bus adapter (NBA) then divides the data into packets, each with a header to which a transport header and trailer is added with frame type code which specifies one of three modes of addressing in the transmission of data, namely a physical address mode for computer to computer transmission using two bytes for source and destination addresses, a logical address mode and a data type mode. In the logical address mode, one of the two addressing bytes contains a logical channel number (LCN) established between the transmitting and one or more receiving computers. In the data type mode, one of the addressing bytes contains a code identifying the type of data

    Tiltrotor CFD part II: aerodynamic optimisation of tiltrotor blades

    Get PDF
    This paper presents aerodynamic optimisation of tiltrotor blades with high-fidelity computational fluid dynamics. The employed optimisation framework is based on a quasi-Newton method, and the required high-fidelity flow gradients were computed using a discrete adjoint solver. Single-point optimisations were first performed, to highlight the contrasting requirements of the helicopter and aeroplane flight regimes. It is then shown how a trade-off blade design can be obtained using a multi-point optimisation strategy. The parametrisation of the blade shape allowed to modify the twist and chord distributions, and to introduce a swept tip. The work shows how these main blade shape parameters influence the optimal performance of the tiltrotor in helicopter and aeroplane modes, and how a compromise blade shape can increase the overall tiltrotor performance. Moreover, in all the presented cases, the accuracy of the adjoint gradients resulted in a small number of flow evaluations for finding the optimal solution, thus indicating gradient-based optimisation as a viable tool for modern tiltrotor design

    Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle

    Get PDF
    peer-reviewedBackground In both beef and dairy cattle, the majority of early embryo loss occurs within the first 14 days following insemination. During this time-period, embryos are completely dependent on their maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to their survival. The objective of this study was to investigate whether differences in endometrial gene expression during the mid-luteal phase of the estrous cycle exist between crossbred beef heifers ranked as either high (HF) or low fertility (LF) (following four rounds of artificial insemination (AI)) using the Affymetrix® 23 K Bovine Gene Chip. Results Conception rates for each of the four rounds of AI were within a normal range: 70–73.3%. Microarray analysis of endometrial tissue collected on day 7 of the estrous cycle detected 419 differentially expressed genes (DEG) between HF (n = 6) and LF (n = 6) animals. The main gene pathways affected were, cellular growth and proliferation, angiogenesis, lipid metabolism, cellular and tissue morphology and development, inflammation and metabolic exchange. DEG included, FST, SLC45A2, MMP19, FADS1 and GALNT6. Conclusions This study highlights, some of the molecular mechanisms potentially controlling uterine endometrial function during the mid-luteal phase of the estrous cycle, which may contribute to uterine endometrial mediated impaired fertility in cattle. Differentially expressed genes are potential candidate genes for the identification of genetic variation influencing cow fertility, which may be incorporated into future breeding programmes.Teagasc Walsh Fellowship Programm

    Discrete Lie Advection of Differential Forms

    Get PDF
    In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan's homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC

    The detection of tightly closed flaws by nondestructive testing (NDT) methods

    Get PDF
    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability

    Surface Flow Structure of the Gulf Stream From Composite Imagery and Satellite-Tracked Drifters

    Get PDF
    A unique set of coutemporaneous satellite-tracked drifters and five-day composite Advanced Very High Resolution Radionmeter (AVHRR) satellite imagery of the North Atlantic has been analyzed to examine the surface flow structure of the Gulf Stream. The study region was divided into two sections, greater than 37 degrees N and less than 37 degrees N, in order to answer the question of geographic variability. Fractal and spectral analyses methods were applied to the data. Fractal analysis of the Lagrangian trajectories showed a fractal dimension of 1.21 +/- 0.02 with a scaling range of 83 - 343 km. The fractal dimension of the temperature fronts of the composite imagery is similar for the two regions with D = 1.11 +/- 0.01 over a scaling range of 4 - 44 km. Spectral analysis also reports a fairly consistent value for the spectral slope and its scaling range. Therefore, we conclude there is no geographic variability in the data set. A suitable scaling range for this contemporaneous data set is 80 - 200 km which is consistent with the expected physical conditions in the region. Finally, we address the idea of using five-day composite imagery to infer the surface flow of the Gulf Stream. Close analyses of the composite thermal fronts and the Lagrangian drifter trajectories show that the former is not a good indicator of the latter
    • …
    corecore