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I. INTRODUCTION
 

Recent advances in engineering structural design and quality
 
assurance techniques have incorporated material fracture charac­
teristics as major elements in design criteria. Fracture control
 
design criteria, in a simplified form, are the largest (or crit­
ical) flaw size(s) that a given material can sustain without frac­
ture when subjected to service stresses and environmental condi­
tions. To produce hardware to fracture control design criteria,
 
it is necessary to assure that the hardware contains no flaws
 
larger than the critical.
 

Many critical structural hardware components, including some
 
pressure vessels, do not lend themselves to proof testing for
 
flaw screening purposes. Other methods must be used to establish
 
maximum flaw sizes that can exist in these structures so fracture
 
analysis predictions can be made regarding-structural integrity.
 

Nondestructive- testing--ENDT)- is- the only practica-l way-in which
 
included flaws may be detected and characterized. The challenge
 
to nondestructive testing engineering technology is thus to (1)
 
detect the flaw, (2) determine its size and orientation, and (3)
 
precisely locate the flaw. Reliance on NDT methods for flaw hard­
ware assurance requires a knowledge of the flaw size that each
 
NET method can reliably find. The need for establishing a know­
ledge of flaw detection reliability, i.e., the maximum size flaw 
that can be missed, has been identified and has been the subject 
of other programs* involving flat 2219 aluminum alloy specimens.
 
The next logical step in terms of NASA Space Shuttle program re­
quirements was to evaluate flaw detection reliability in other
 
space hardware elements. This area of need and the lack of such
 
data were pointed out in NASA TMX-64706, which is a recent state­
of-the-art assessment of NDT methods.
 

*Donald E. Pettit and David W. Hoeppner: Fatigue FZcao Growth and 
NDI Evaluation for Preventing Through-Cracks in Spacecraft Tank­
age Structures. NASA CR-128560, September 25, 1972.
 

R. T. Anderson, T. J. DeLacy, and R. C. Stewart: Detection of 
Fatigue Cracks by Nondestructive Testing Methods. NASA CR-128946, 
March 1973. 

Ward D. Rummel, Paul H. Todd, Jr., Sandor A. Frecska, and Richard
 
A. Rathke: The Detection of Fatigue Cracks by Nondestructive
 
Testing Methods. NASA CR-2369, February 1974.
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The program reported here was conducted to determine the reli­

ability of nondestructive testing methods in detecting tightly
 

closed flaws in three Space Shuttle structural elements, i.e.,
 

(1) cracks in the radii of integrally stiffened 2219 aluminum
 

alloy structures, (2) lack of penetration (LOP) in welded 2219
 

aluminum alloy structures, and (3) cracks in the weld area in
 

welded 2219 aluminum alloy structures. X-radiographic, penetrant,
 

ultrasonic, and eddy current methods were evaluated.
 

As a secondary objective, production processing steps were simu­

assess the effects of various operations and constraints
lated to 

on inspection sensitivity and to aid in analysis and planning of
 

inspection operations at optimum points in the production sequence,
 

Experience has shown that one of the most difficult flaws to de­

tect by NDT techniques is a small tightly closed flaw and that
 

this is one of the flaw types most detrimental to load-carrying
 

Tightly closed flaws may be simulated by artificially
structures. 

induced fatigue cracks and by lack of penetration (LOP) in two
 

opposing pass weldments. By using these primary flw types, the
 

influences of crack orientation, location, etc can be evaluated by
 

systematic variation of sample preparation and inspection sequences.
 

Methods previously developed were used to prepare test specimens.
 

NDT methods were optimized for these specimens in accordance with
 

industry practices. NDT evaluation of samples was conducted and
 

documented to establish a data base for rigorous analysis of NDT
 

capabilities. Statistical analysis methods established previously
 

under NASA contract NAS9-12276 and in current investigation under
 

NASA contract NAS3-18907
t were used to analyze and present the
 

data.
 

Since the output of the program was engineering data, care was
 

taken in the program to randomize samples, inspection sequences,
 

and data reporting. Inspection analyses were performed indepen­

dently by operators who had no knowledge of the number of flaws
 

in test panels. Blank panels were introduced to further randomize
 

data and to negate anticipation of flaws. The results are intended
 

to reflect attainable detection sensitivities and reliabilities when
 

NDT techniques are directed toward specific flaw types.
 

The program was functionally divided into three elements relating
 

to the panel and flaw types. These elements are discussed separ­

ately in the following chapters.
 

*S. Klima: Assessment of NDT ReZiability Data. NAS3-18907. 

(to be completed in June 1975) 
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II STATE-OF-THE-ART NONDESTRUCTIVE TESTING (NDT) METHODS
 

Nondestructive testing, nondestructive inspection, and nondes­

tructive evaluation in the broadest sense denote testing, inspec­

tion, and/or evaluation of a material, component, or system with­

out altering or destroying the functional capability of the tested
 

item. Like other forms of testing, NDT is used to reduce risk in
 

the functional performance of the item and as such provides a
 

measure of insurance for the producer, evaluator, and/or operator
 

of the item. Unlike other forms of testing, it offers the capa­

bility for 100% testing or sampling and provides economic advantage 

by assurance of no loss of any part of the item. These advantages
 

have been both aids and liabilities in the orderly development of
 

the technology. Although nondestructive testing methods are widely
 

used, little quantitative information concerning testing capa­

bilities has been produced.* This program was directed toward
 

quantitative assessment of NDT methods. It was not intended to
 

advance the state of the art in terms of new methods or increased 

sensitivity. It was intended to provide a practical engineering 

tool for application of methods now used in the industry. The r­
radiography (X-ray), liquid penetrant, ultrasonic, and eddy current 

test methods generally used for assurance of aluminum alloy mater­

ials, components, and assemblies were selected for this study. 

Many testing options are available in application of these methods. 

This report addresses generally applied techniques as used in state­

of-the-art engineering technologies. 

*Robert B. Neuschaefer and James B. Beal: Assessment of and Stand­

ardization for Quantitative Nondestructive Testing. NASA TM-X­
64706, September 30, 1972. 

ASME Boiler and Pressure Vessel Code (Sections I, I1, VIII, and 
IX), 1968.
 

Military Standard: Radiographic Inspection, Sowndness Require­

ments for Fusion Welds in Aluminum and Magnesium Missile Compo­
nents. MIL-R-45774, October 1963. 

J. R. Alburger: "A New, Significant Penetrant Parameter - Indi­

cation Depletion Time Constant." Paper presented before the 

American Society for Nondestructive Testing, Spring Conference, 
Los Angeles, California, 1973. 

B. G. Martin and C. J. Adams: Detection of Lack of Fusion in 

Aluminum Alloy Weldments by Ultrasonic Shear Waves. Technical 
Paper°3499, Douglas Aircraft Company, 1965. 
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A. X-RADIOGRAPHY
 

X-radiography is well established as a nondestructive evaluation
 

tool and has been used indiscriminately as an all-encompassing
 
inspection method for detecting flaws and describing flaw size.
 
While pressure vessel specifications* frequently require X­

radiographic inspection and the criteria allow no evidence of
 

crack, lack of penetration, or lack of fusion on radiographs,
 
little attempt has been made to establish or control defect detec­

tion sensitivity. Further, an analysis of the factors involved
 

clearly demonstrates that X-radiography is one of the least re­

liable of the nondestructive techniques available for crack detec­

tion. The "quality" or "sensitivity" of a radiograph is measured
 
by reference to a penetrameter image on the film at a location of
 

maximum obliquity from the source. A penetrameter is a physical
 

standard made of material radiographically similar to the test
 

object, with a thickness less than or equal to 2% of the test ob­

ject thickness and containing three holes of diameters four times
 

(4T), two times (2T), and equal to (IT) the penetrameter thickness.
 
Normal space vehicle sensitivity is 27 as noted by perception of
 

the 2T hole (Fig. II-1).
 

In theory, such a radiograph should reveal a defect with a depth
 

equal to or greater than 2% of the test object thickness. Since
 

it is, however, oriented to defects of measureable volume, tight
 

defects of low volume such as cracks and lack of penetration may
 

not be detected.
 

*Op cit. ASME Boiler and Pressure Vessel Code. 

MIL R-45774.
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2T dia Hole
 

1T dia 

4T dia / 

Hole 

Thickness,. T, Equal to
 
2% of the Test Material
 

Figure I-1 Conventional Penetrmneter (MIL-STD-453) 

In practice, cracks and lack of penetration defects are detected
 
only if the axis of the crack is located along the axis of the 
incident radiation. Consider for example a test object (Fig. 11-2) 
that contains defects A, B, and C. Defect A lies along the axis 
of the cone of radiation and should be readily detected at depths 
approaching the 2% sensitivity requirement. Defect B, whose 
depth may approach the plate thickness, will not be detected since 
it lies at an oblique angle to incident radiation. Defect C lies 
along the axis of radiation but will not be detected over its total 
length. This variable-angle property of X-radiation accounts for 
a higher crack detection record than Would be predicted by g~omet­
ric analysis and at the same time emphasizes the fallacy of de­
pending on X-radiography for total defect detection and evaluation. 

11-3
 



,,, ,! ,,
 

Figure-I1-2 
Schematic View of Crack Orientationwith 
Respect to the Cone of Radiation from an 
X-ray Tube (Half Section) 

Variables in the X-ray technique include such parameters as kilo­
voltage, exposure time, source film distance and orientation, film
 

type, etc. Sensitivity to orientation of fatigue cracks has been
 
demonstrated by Martin Marietta in 2219-T87 parent metal. Six
 

different crack types were used. An off-axis exposure of 6 degrees
 
resulted in missing all but one of the cracks. A 15-degree offset
 

caused total crack insensitivity. Sensitivity to tight LOP is pre­
dicted to be poorer than for fatigue cracks. "Quick-look" inspec­
tion of known test specimens showed X-radiography to be insensi­
tive to some LOP but revealed a porosity associated with the lack
 
of penetration.
 

Advanced radiographic techniques have been applied to analysis .of 

tight cracks including high-resolution X-ray film (Kodak Hi-Rel) 
and electronic image amplification. Exposure times for high-reso­
lution films are currently too long for practical application (24 

hr. 0.200-in. aluminum). The technique as it stands now may be 
considered to be a special engineering tool. 

Electronic image processing has shown some promise for image analy­

sis when used in the derivative enhancement mode but is affected by
 

the same geometric limitations as in producing the basic X-radiograph.
 

The image processing technique may also be considered as a useful
 
engineering tool but does not in itself offer promise of reliable
 
crack or lack of penetration detection by X-radiography.
 

This program addressed conventional film X-radiography as generally
 

applied in industry.
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B. PENETRANT 

Penetrants are also used for inspection of pressure vessels to
 
detect flaws and describe flaw length. Numerous penetrant mate­
rials are available for general and special applications. The
 
differences between materials are essentially in penetration and
 
subsequent visibility, which in turn affect the overall sensi­
tivity to small defects. In general, fluorescent penetrants are
 
more sensitive than visible dye penetrant materials and are used
 
for critical inspection applications. Six fluorescent penetrant
 
materials are in current use for inspection of Saturn hardware,
 
i.e., SKL-4, SKL-HF, ZL-22, ZL-44B, P545, and P149. 

To be successful, penetrant inspection requires that discontinui­
ties be open to the surface and that the surface be free of con­
tamination. Flowed material from previous machining or scarfing 
operations may require removal by light buffing with emery paper 
or by light chemical etching. Contamination may be removed by 
solvent wiping, by vapor degreasing, and by ultrasonic cleaning 
in a Freon bath. Since ultrasonic cleaning is impractical for 
large structures, solvent wipe and vapor degreasing are most com­
monly used and are most applicable to-this program.
 

Factors affecting sensitivity include not only the material sur­
face condition and type of penetrant system used but also the
 
specific sequence and procedures used in performing the inspec­
tion. Parameters such as penetrant dwell time, penetrant removal
 
technique, developer application and thickness, and visual inspec­
tion procedure are controlled by the inspector. This in turn must
 
be controlled by training the inspector in the discipline to main­
tain optimum inspection sensitivities.
 

In Martin Marietta work with fatigue cracks (2219"T87 aluminum),

small tight cracks were often undetectable-by high-sensitivity 
penetrant materials but were rendered visible by proof loading
 
the samples to 85% of yield strength. 

In recett work, Alburger* reports that controlling crack width
 
to 6 to 8 microns results in good evaluation of penetrant mate­
rials, while tight cracks having widths of less than 0.1 micron
 
in width are undetected by state-of-the-art penetrants. These
 
values may be used as qualitative benchmarks for estimation of
 
crack tightness in surface-flawed specimens and for comparison of
 
inspection techniques. This program addressed conventional fluo­
rescent penetrant techniques as they may be generally applied in
 
industry,
 

*Op cit. J. R. Alburger. 
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C. ULTRASONIC INSPECTION
 

Ultrasonic inspection involves generation of an acoustical wave
 
in a test object; detection of resultant reflected, transmitted,
 
and scattered energy from the volume of the test object; and
 

evaluation by comparison with "known" physical reference standards.
 

Traditional techniques utilize shear waves for inspection. Figure
 

11-3 illustrates a typical shear wave technique and corresponding
 
oscilloscope presentation. An acoustical wave is generated at an
 
angle to the part surface, travels through the part, and is re­
flected successively by boundaries of the part and also by in­
cluded flaw surfaces. The presence of a-reflected signal from
 

the volume of the material indicates the presence of a flaw. The
 
relative position of the reflected signal locates the flaw while
 
the relative amplitude describes the size of the flaw. Shear wave
 
inspection is a logical tool for evaluating welded specimens and
 
for tankage.
 

FRRNT SUR FACE SIG NAL 

REFLECTED SIGNAL 

PATH OF 

*A SOI, T - T RA N SD U E R 

,,.' ,, 

PART GEOMETRYOSCILLOSCOPE PRESENTATION 

Figure I-3 Shear Wave Inspection 

By scanning and electronically gating signals obtained from the
 
volume of a part, a plan view of a C-scan recording may be gener­
ated to provide uniform scanning and control of the inspection
 
and to provide a permanent record of inspection.
 

The shear wave technique and related modes are applicable to de­
tection of tight cracks. Planar (crack life) interfaces were
 
reported to be detectable by ultrasonic shear wave techniques
 
when a test specimen was loaded in compression up to the yield
 

point.* -Variable parameters influencing the sensitivity of shear
 
wave inspection include test specimen thickness, frequency and
 
type, and incident sound angle. A technique is best optimized by
 
analysis and by evaluation of representative reference specimens.
 

It was noted that a shear wave is generated by placing a trans­

ducer at an angle to a part surface. Variation of the incident
 
angle results in variation in ultrasonic wave propagation modes
 

and variation of the technique. In aluminum, a variation in inci­
dent angle between approximately 14- to 29-degree (water immersion)
 
inclination to the normal results in propagation of energy in the
 

shear mode (particulate motion transverse to the direction of prop­
agation).
 

*Op cit. B. G. Martin and C. J. Adams.
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At an angle of approximately 30 degrees, surface or Rayleigh 
waves that have a circular particulate motion in a plane trans­
verse to the direction of propagation and a penetration of about 
one-half wavelength are generated. At angles of approximately
 
7.8, 12.6, 14.7, 19.6, 25.6, and 31.0 to 33.0 degrees, complex
 
Lamb waves that have a particulate motion in symmetrical or asym­
metrical sinusoidal paths along the axis of propagation and that
 
penetrate through the material thickness are generated in the
 
thin (0.060-in.) materials.
 

In recent years, a technique known as "Delta" inspection has
 
gained considerable attention in weldment evaluation. The tech­
nique consists of irradiating a part with ultrasonic energy prop­
agated in the shear mode and detecting redirected, scattered, and
 
mode-converted energy from an included flaw at a point directly
 
above the flaw (Fig. 11-4). The advantage of the technique is the
 
ability to detect crack-like flaws at random orientations.
 

Re.evn. 

Transmitting'
Redirected/ Transducer 
Reradiated 
Energy_... 

Path of Sound Energy 

Figure 11-4 
Schematic View of the Delta 
Inspection Technique
 

In addition to variations in the ultrasonic energy propagation
 
modes, variations in application may include immersion or contact, 
variation in frequency, and variation in transducer size and focus. 
For optimum detection sensitivity and reliability, an immersion 
technique is superior to a contact technique because several in­
specteion variables are eliminated and a permanent recording may be 
obtained. Although greater inspection sensitivity is obtained at
 
higher ultrasonic frequencies, noise and attenuation problems
 
increase and may blank out a defect indication. Large transducer
 
size in general decreases the noise problems but also decreases
 
the selectivity because of an averaging over the total transducer 
face area. Focusing improves the selectivity of a larger trans­
ducer for interrogation of a specific material volume, but der
 
creases the sensitivity in the material volume located outside the
 
focal plane.
 

I 

This program addressed the conventional -shear .wave.technique as
 
generally applied in industry.
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D. EDDY CURRENT
 

Eddy current inspection has been demonstrated to be very sensi­
tive to small flaws in thin aluminum materials* and offers con­
siderable potential for routine application. Flaw detection by
 

eddy current methods involves scanning the surface of a test
 
object with a coil probe, electronically monitoring the effect
 
of such scanning, and noting the variation of the test frequency
 

to ascertain flaw depth. In principle, if a probe coil is
 
energized with an alternating current, an alternating magnetic
 
field will be generated along the axis of the coil (Fig. 11-5). 
If the coil is placed in contact with a conductor, eddy currents
 

will be generated in the plane of the conductor around the axis 
of the coil. The eddy currents will in turn generate a magnetic 
field of opposite sign along the coil. This effect will "load" 
the coil and cause a,resultant shift in impedance of the coil
 
(phase and amplitude). Eddy currents generated in the materi al 
depend on conductivity p), the thickness T, the magnetic permea­
bility p, and the material's continuity. For aluminum alloys, 
the permeability is unity and need not be considered. 

Note: H.H is the primary magneticp 
field generated by the coil. 

2. H is the secondary magnetic 
feld generated by eddy Current 
current flow.-- ]_ Source 

3. 	 Eddy current flow depends 
on: 
P 	 = electrical conductivity; 

Probet = thickness (penetration); 
12 = magnetic permeability; 

= continuity (cracks). 

H~~

P to,)oEddy_ 

Figure I1-5 
Schematic View of on Eddy 	Current Inspection 

*Recommended Practice for Standardizing Equipment for Electro­

magnetic Testing of Seamless Aluminum Alloy Tube. ASTM E-215-67, 

September 1967. 
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The conductivity of 2219-T87 aluminum alloy varies slightly from
 
sheet to sheet but may be considered to be a constant for a given
 
sheet. Overheating due to manufacturing processes* will change

the conductivity and therefore must be considered as 
a variable
 
parameter. The thickness (penetration) parameter may be con­
trolled by proper selection of a test frequency. This variable
 
may also be used to evaluate defect depth and to detect part­
through cracks from the opposite side. For example, since at
 
60 kHz the eddy current penetration depth is approximately 0.060
 
inch in 2219-T87 aluminum alloy, cracks should be readily de­
tected from either available surface. As the frequency decreases,
 
the penetration increases so the maximum penetration in 2219
 
aluminum is calculated to be on the order of 0.200 to 0.300 inch.
 

In practical application of eddy currents, both the material param­
eters must be known and defined and the system parameters known
 
and controlled. Liftoff (i.e., the spacing between the probe and
 
material surface) must be held constant or must be factored into
 
the results. Electronic readout of coil response must be held
 
constant or defined by reference to calibration samples. Inspec­
tion speeds must be held constant or accounted for. Probe orien­
tation must be constant or the effects defined, and probe wear
 
must be minimized. Quantitative inspection results are obtained
 
by accounting for all material and system variables and by refer­
ence to physically similar "known standards."
 

In current Martin Marietta studies of fatigue cracks, the eddy
 
-current method is effectively used in describing the crack sizes.
 
Figure 11-6 illustrates an eddy current description of two sur­
face fatigue cracks in the 2219-T87 aluminum alloy. Note the
 
discrimination capability of the method for two cracks that range
 
in size only by a minor amount. The double-peak readout in the
 
case of the smaller crack is due to the eddy current probe size
 
and geometry. For deep buried flaws, the eddy current technique
 
may-not describe the crack volume but will describe the location
 
of the crack with respect to the test sample surface. By apply­
ing conventional ultrasonic C-scan gating and recording tech­
niques, a permanent C-scan recording of defect location and size
 
may be obtained as illustrated in Figure 11-7.
 

Since the eddy current technique detects local changes in material
 
continuity, the visibility of tight defects is greater than with
 
other techniques. The eddy current technique will be used as a
 
benchmark for other techniques due to its inherently greater sensi­
tivity.
 

*Ward D. Rummel. "Monitor of the Heat-Affected Zone in 2219-T87 
Aluminum Alloy Weldments." Transactions of the 1968 Symposiwn 
on NDT of Welds and MateriaZs Joining, Los Angeles, California, 
March 11-13, 1968. 
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/ Probe Travel 

Figure 11-6 
Eddy Current Detection of 2Wo Fatigue Cracks in 
2219-T87 Aluminum Alloy 

Figure II-?
 
Eddy Current C-Scan Recording of a 2219-T8? Alurinun Alloy Panel
 
Ccntaining Three Fatigue Cracks (0. 820 inch long and 0.10 inch deep)
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Although eddy current scanning of irregular shapes is not a gen­

eral industrial practice, the techniques and methods applied are
 

in general usage and interpretation may be aided by recorded data
 

collection and analysis in future programs.
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PANEL EVALUATIONII. INTEGRALLY STIFFENED STRINGER 

Integrally machined stiffened panels and riveted T-stiffened
 

panels are common aerospace structural design elements and are
 

Cracks in stiffened
representive of Space Shuttle structure. 


be the result of a raw material (plate) anomaly, orpanels may 
may be a product of machining, heat treating, forming operations,
 

or service loading. If they are service induced, cracks will
 

most likely form at the tangency point of the rib radius as shown
 

Note in this figure that a rather
schematically in Figure III-1. 


sharp stress concentration occurs at the junction of the stress
 

and fillet radii (the nominal membrane stress in this figure is
 

30 ksi). This stress concentration extends through the thickness
 

but decreases from a K of about 1.4 on the rib side to 1.2 on
 
t
 

the opposite side. Note also the extremely sharp decrease in
 

stress at points along the curvature of the fillet. Fatigue flaw
 

growth in stiffened panels was evaluated under a previous NASA
 

contract* in which flaw growth in the rib side was assessed.
 

In a practical sense, the difficulty encountered by artificially
 

extending flaws occurring on the rib side of the fillet means
 

that these flaws should not be of major concern in flight hard-

Thus the most critical
 ware subjected to a similar loading state. 


area to be examined by NDT is at the fillet tangency point and the
 

back surface behind this position because of the severity of cracks
 

occurring in the region of stress concentration. 

Cracks in the radius area normally open to the.surface and are
 
a
effectively simulated by the tightly closed fatigue crack as 


worst-case condition. Artificially induced fatigue cracks in the
 

radius area were selected for evaluation. After the flaw type and
 

location were established, a program plan for test panel preparation,
 

evaluation, and analysis was established as shown schematically in
 

Figure III-2.t
 

*E. J. Beck: Fatigue Flaw Growth Behavior in Stiffened and 

Biaxial Tension. Martin Marietta 
(Contract NAS9-12439) 

Unstiffened Panels Loaded in 
Aerospace, Denver, Colorado, February 1973. 


tAll panels prepared in this program were evaluated independently
 
Only the results of
by Rockwell International, Space Division. 


the Martin Marietta studies are shown in this report.
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Figure I-2 NDT Evaluation Sequence for Integrally Stiffened Panels 
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A. SPECIMEN PREPARATION
 

Integrally stiffened panel blanks were machined from 3.81-centi­
meter (,-in.) thick 2219-T87 aluminum alloy plate to a final
 
stringer height of 2.54 centimeters (1 in.) and an initial skin
 

thickness of 0.780 centimeter (0.310 in.). The stringers were
 
located asymmetrically to provide a 15.1-centimeter (5.97-in.)
 
band on the lower stringer and a 12.6-centimeter (4.97-in.) bar d
 

on the upper stringer, thereby orienting the panel for inspection
 
reference (Fig. 111-3). A nominal 63 rms (root-mean-square) sur­

face finish was maintained. All stringers were 0.635-centimeter
 

(0.250-in.) thick and were located perpendicular to the plate
 

rolling direction.
 

Fatigue cracks were grown in the stiffener/rib area of panel
 

blanks at random locations along the ribs. Starter flaws were
 
introduced by electrodischarge machining (EDM) using shaped
 
electrodes to control final flaw shape. Cracks were then extended
 
by fatigue and the surface crack length visdally monitored and con­

trolled to the required final flaw size and configuration require­

ments as shown schematically in Figure 111-4. *Nominal flaw sizes
 
and growth parameters are as shown in Table III-1.
 

Following growth of flaws, 0.076 centimeter (0.030 in.) was ma­
chined off the stringer side of the panel using a shell cutter to
 
produce a final membrane thickness of 0.710 centimeter (0.280 in.),
 
a 0.317-centimeter (0.125-in.) radius at the rib, and a nominal 63
 

rms surface finish. Use of a shell cutter randomized the surface
 
finish pattern and is representative of techniques used in hardware
 
production. Grip ends were then cut off each panel and the panels
 
were cleaned by vapor degreasing and submitted for inspection.
 
Forty-threa flawed panels and four unflawed panels were prepared
 
and submitted for inspection. Three additional panels were pre­
pared for use in establishing flaw growth parameters and were de­
stroyed to verify growth parameters and techniques, Distribution
 

of flaws in the panels is as shown in Table 111-2.
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Table 111-1 Parameters for Fatigue Crack Growth in Integrally Stiffened Panels 

Measured
EDh4 Starter 

Not Fatigue Final 


Flaw Specimen Type of 


CASE a/2C a/t Depth Width Length Thickness Loading 


1 0.5 0.2 0.061 cm 0.045 cm 0.508 cm 0.710 cm. 3-Point 

(0.280 in.) Bending
(0.024 in.) (0.018 in-.) (0.200 in.) 

• _(30 


2 0.25 0.2 0.051 cm 0.445 cm 0.760 cm 0.710 cm 3-Point 

(0.280 in.)' Bending
(0.020 in.) (0.175 in.) (0.300 in.) 


3 0.1 0.2 0.031 cm 1.34 cm 1.52 cm 0.710 cm 3-Point 

(0.280 in.) Bending
(0.012:in.) (0.530'in.) (0.600 in.) 


1_ 


Note: a = final depth of flaw,
 
2C = final length of flaw,
 
t = final panel thickness.
 

Stress
 
Cycles No. of No. of
 

Stress (avg) Panels Flaws
 

20.7x106 80,000 22 102
 
N/m2
 

ksi)
 

20.7x10 6 25,000 22 22
 
21/m2
 

(30 ksi)
 

20.7x10 6 22,000 10 22
 
N/m2
 

(30 ksi)
 



H 
H 

Table T1-2 

Crack 

Designation 

1 

2 

3 

Stringer Panel Flaw Distribution 

Number of Number of Flaw 

Panels Flaws aDetha) 

23 102 0.152 cm 
(0.060 in) 

10 22 0.152 cm 
(0.060 in) 

10 22 0.152 cm 
(0.060 in) 

Flaw 

Length (2c) 

0.289 cm 
(0.125 in) 

0.630 cm 
(0.250 in) 

1.520 cm 
(0.600 in) 

Blanks 4 0 

TOTALS 47 146 



B. NDT OPTIMIZATION
 

Following preparation of integrally stiffened fatigue-flawed
 
panels, an NDT optimization and calibration program was initiated.
 
One 	panel containing cracks of each flaw type (case) was selected 
for 	experimental and system evaluations. Criteria for establish­
ment of specific NDT procedures were (1) penetrant, ultrasonic,
 
and 	eddy current inspection from the stringer (rib) side only, and
 
(2) NDT evaluation using state-of-the-art practices for initial
 
evaluation and for system calibrations prior to actual inspection.
 
Human factors w re,minimized by the use of automated C-scan re­
cording of ultrasonic and eddy current inspections and through re­
dundant evaluation by three different and independent operators.
 
External sensitivity indicators were used to provide an additional
 
measurement of sensitivity and control.
 

1. X-radiography
 

Initial attempts to detect cracks in the stringer panels by X­
radiography were totally unsuccessful. A 1% penetrameter sensi­
tivity was obtained using a Norelco 150 beryllium window X-ray
 
tube and the following exposure parameters with no success in
 
crack detection:
 

1) 	50 kV , 

2) 	20 MA;
 

3) 	5-minute exposure;
 

4) 	48-in. film focal distance (Kodak, type M, industrial X-ray
 
film).
 

Various masking techniques were tried using the above exposure 
parameters with no success.
 

After completion of the initial ultrasonic inspection sequence,
 
two 	panels were selected that contained flaws of the greatest 
depth as indicated by the altrasonic ,evaluations. Flaws were
 
marginally resolved in one panel using Kodak single-emulsion,
 
type-R film and extended exposure times. Flaws could not be re­
solved in the second panel using the same exposure techniques.
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Special X-radiographic analysis was provided through the courtesy
 
of Mr. Henry Ridder, Magnaflux Corporation, in evaluation of case
 

2 and case 3 panels using a recently developed microfocus X-ray
 

system.* This system decreases image unsharpness, which is in­

herent in conventional X-ray units. Although this system thus has
 

a greater potential for crack detection, no success was achieved.
 

Two factors are responsible for the poor results with X-radio­

graphy: (1) fatigue flaws were very tight and were located at
 

the transition point of the stringer (rib) radius, and (2) cracks
 

grew at a slight angle (from normal) under the stringer. Such
 

angulation decreases the X-ray detection potential using normal
 

exposures. The potential for detection at an angle was evaluated
 

by making exposures in 1-degree increments at angles from 0 to 15
 

degrees by applying optimum exposure parameters established by
 
Two panels
penetrameter resolution. No crack image was obtained. 


were evaluated using X-ray opaque penetrant fluids for enhancement.
 

No crack image was obtained.
 

As a result of the poor success in crack detection with these
 

panels, the X-radiographic technique was eliminated from the in­

tegrally stiffened panel evaluation program.
 

2. Penetrant Evaluation
 

In our previous work with penetrant materials and optimization
 

for fatigue crack detection under contract NAS9-12276,t we se­

lected Uresco P-151, a group VII solvent removable, fluorescent
 

penetrant system, for evaluation. Storage (separation and pre­

cipitation of constituents) difficulties with this material and
 

recommendations from Uresco resulted in selection of the Uresco
 

P-149 material for use in this program. In previous tests, the
 

P-149 material was rated similar in performance to the P-151
 

material and is more easily handled. Three materials, Uresco
 

P-133, P-149, and P-151, were evaluated with known cracks in 

stringer and welded panels and all were determined to be capable
 

of resolving the required flaw types, thus providing a backup
 

(P-133) material and an assessment of P-151 versus P-149 capa­

bilities. A procedure was written for use of the P-149 material
 

*Henry J. Ridder: "High-Sensitivity Radiography with Variable
 

Microfocus X-ray Unit." Paper presented at the WESTEC 1975 ASNT
 

Spring Conference, Los Angeles, California. (Magnaflux Corpora­

tion MX-100 Microfocus X-ray System)
 

tWard D. Rummel, Paul H. Todd, Jr., Sandor A. Frecska, and Richard
 

The Detection of Fatigue Cracks by NondestructiveA. Rathke: 

Testing Methods. NASA CR-2369, February 1974, pp 28-35.
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for all panels in this program. This procedure is shown in
 
Appendix A.
 

Removal of penetrant materials between inspections was a major
 
concern for both evaluation of reference panels and the subse­
quent test panels. Ultrasonic cleaning using a solvent mixture
 
of 70% l,l,l-trichloroethane and 30% isopropyl alcohol was used
 
initially but was found to attack welded panels and some areas of
 
the stringer panels. The procedure was modified to ultrasonic
 
cleaning in 100% "(technical grade) isopropyl alcohol. The tech­
nique was verified by application of developer to known cracks
 
with no evidence of "bleedout" and by continuous monitoring of
 
inspection results. 
The panel cleaning procedure was incorporated
 
as an integral part of the penetrant procedure and is included in
 
Appendix A.
 

3. Ultrasonic Evaluation
 

Optimization of ultrasonic techniques using panels containing
 
cases 1, 2, and 3 cracks was accomplished by analysis and by ex­
perimental assessment of the best overall signal-to-noise ratio.
 
Primary consideration was given to the control and reproducibility

offered by shear wave, surface wave, Lamb wave, and Delta tech­
niques. On the basis of panel configuration and previous experi­
ence, Lamb wave and Delta techniques were eliminated for this work.
 
Initial comparison of signal amplitudes at 5 and 10 N z, and pre­
vious experience with the 2219-787 aluminum alloy, resulted in
 
selection of 10 M4z for further evaluation.
 

Panels were hand-scanned in the shear mode at incident angles

varying from 12 to 36 degrees in the immersion mode using the
 
C-scan recording bridge manipulator. Noise from the radius of the
 
stringer made analysis of separation signals difficult. A flat
 
reference panel containing an 0.180-inch long by 0.090-inch deep
 
fatigue crack was selected for use in further analyses of flat and
 
focused transducers at various angles. Two possible paths for
 
primary energy reflection were evaluated with respect to energy
 
reflection. The first path is the direct reflection of energy from
 
the crack at the initial material interface. The second is the
 
energy reflection off the back surface of the panel and subsequent
 
reflection from the crack. 
The reflected energy distribution for
 
two 10-MHz transducers was plotted as shown in Figure Ill-5. Sub­
sequent C-scan recordings of a case 1 stringer panel resulted in
 
selection of an 18-degree angle of incidence using a 10-MHz 0.635­
centimeter diameter flat transducer. Recording techniques, test
 
setup, and test controls were optimized and an inspection evalua­
tion procedure written. Details of this procedure are shown in
 
Appendix B.
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4. Eddy Current Evaluation
 

For eddy current inspection, we selected the NDT Instruments Vec­
tor III instrument* for its long-term electronic stability and
 
selected 100 kHz as the test frequency based on the results of
 
previous work and the required depth of penetration in the alu­
minum panels. The 100-kHz probe has a 0.063-inch core diameter
 
and is a single-coil helically wound probe. Automatic C-scan
 
recording was required and the necessary electronic interfaces
 
were fabricated to utilize the Budd SR-150 ultrasonic scanning
 
bridge and recorder system. Two critical controls were necessary
 
to assure uniform readout--alignment and liftoff controls. A
 
spring-loaded probe holder and scanning fixture were fabricated
 
to enable alignment of the probe on the radius area of the stringer
 
and to provide constant probe pressure as the probe is scanned
 
over a panel. Fluorolin tape was used on the sides and bottom of
 

the probe holder to minimize friction and probe wear. Figure
 
111-6 illustrates the configuration of the probe holder and Figure
 
III-7 illustrates a typical eddy current scanning setup.
 

Various recording techniques were evaluated. Conventional C-scan
 

in which the probe is scanned incrementally in both the x and y
 
directions was not entirely satisfactory because of the rapid
 
decrease in response as the probe was scanned away from the
 
stringer. A second raster scan recording technique was also eval­
uated and used for initial inspections., In this technique the
 
probe scans the panel in only one direction (x-axis) while the
 
other direction (y-axis) is held constant. The recorded output is
 
indicative of changes in the x-axis direction while the y-axis,
 
driven at a constant stepping speed, builds a repetitive pattern
 
to emphasize anomalies in the x-direction. In this technique,
 
the sensitivity of the eddy current instrument is held constant.
 

A procedure written for inspection usingthe raster scan tech­
nique was initially verified on case 1, 2, and 3 panels. Details
 
of this procedure are shown in Appendix C.
 

An improvement in the recording technique was made by implement­
ing an analog scan technique. This recording is identical to the
 
raster scan technique with the following exceptions. The sensi­
tivity of the eddy current instrument (amplifier gain) is stepped
 
up in discrete increments each time a line scan in the x-direction
 
is completed. This technique provides a broad amplifier gain
 
range and allows the operator to detect small and large flaws on
 

*NDT Instruments Inc, 705 Coastline Drive, Seal Beach, California,
 

90740.
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Figure 111-? 
Typical Eddy Current Scanning Setup for Stringer 
PaneIs 
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the same recording. It also accommodates some system noise due
 
to panel smoothness and probe backlash. Examples of the raster
 
scan and analog scan recordings are shown in Figure 111-8. The 
dual or shadow trace is due to backlash in the probe holder. The
 
inspection procedure was modified and implemented as shown in 
Appendix C.
 

Raster Scan 

1.0 3.7 

Analog Scan 

Figure 111-8 Typical Eddy Current Recordings
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C. TEST SPECIMEN EVALUATION
 

Test specimens were evaluated by optimized penetrant, ultrasonic, 
and eddy current inspection procedures in three separate inspec­
tion sequences. After familiarization with the specific proce­
dures to be used, the 47 specimens (94 stringers) were evaluated 
by three different operators for each inspection sequence. In­
spection records were analyzed and recorded by each operator with­
out a knowledge of the total number of cracks present, the identity
of previous operators, or previous inspection results. Panel iden­
tification tags were changed between inspection sequence 1 and 2 
to further randomize inspection results.
 

Sequence 1 - Inspection of As-Machined Panels
 

The Sequence 1 inspection included penetrant, ultrasonic, and eddy
 
current procedures by three different operators. Each operator
 
independently performed the entire inspection sequence, i.e., made
 
his own ultrasonic and eddy current recordings, interpreted his
 
own recordings, and interpreted and reported his own results.
 

Inspections were carried out using the optimized methods estab­
lished and documented in Appendices A thru C. Crack length and 
depth (ultrasonic only) were estimated to the nearest 0.16 centi­
meter (1/16 in.) and were reported in tabular form for data proc­
essing.
 

Cracks in the integrally stiffened (stringer) panels were very
 
tightly closed and few cracks could be visually detected in the 
as-machined condition.
 

Sequence 2, Inspection after Etching
 

On completion of the first inspection sequence, all specimens were
 
cleaned, the radius (flaw) area of each stringer was given a light

metallurgical etch using "Flicks" etchant solution, and the speci­
mens were recleaned. Less than 0.0013 centimeter (0.0005 in.) of 
material was removed by this process. Panel thickness and sur­
facd roughness were again measured and recorded. Few cracks were
 
visible in the etched condition. The specimens were again in­
spected using the optimized methods. Panels were evaluated by 
three independent operators. Each operator independently per­
formed each entire inspection operation, i.e., made his own ultra­
sonic and eddy current recordings and reported his own results.
 
Some difficulty encountered with penetrant was attributed to
 
"clogging" of the cracks by the various evaluation fluids. 
A
 
mild alkaline cleaning was used to improve penetrant results. No
 
measurable change in panel thickness or surface roughness resulted 
from this cleaning cycle. 
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Sequence 3, Inspection of Riveted Stringers
 

Following completion of sequence 2, the stringer (rib) sections were 
cut out of all panels so a T-shaped section remained. Panels were 
cut to form a 3.17-centimeter (1.25-in.) web on either side of the 
stringer. The web (cap) section was then drilled on 2.54-centimeter 
(1-in.) centers and riveted to a 0.317-centimeter (0.125-in.) thick 
subpanel with the up-set portion of the rivets projecting on the 
web side (Fig. 111-9). The resultant panel simulated a skin-to­
stringer joint that is common in built-up aerospace structures. 
Panel layout prior to cutting and after riveting to subpanels is 
shown in Figure III-10.
 

Riveted panels were again inspected by penetrant, ultrasonic, and 
eddy current techniques using the established procedures. The
 
eddy current scanning shoe was modified to pass over the rivet 
heads and an initial check was made to verify that the rivet heads 
were not influencing the inspection. Penetrant inspection was
 
performed independently by three different operators. One set
 
of ultrasonic and eddy current (analog scan) recordings was made
 
and the results analyzed by three independent operators.
 

Note: All dimensions in inches. 

-]0.250k 

1.25 1
 
S0R1.00
 

--- 0.5 -- 0.125 Typ 

00.150 

Fl 9a 111-9 stringer-to-SubPcmel Attac mnt 
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,!m A 

Figure 11--1 
Integrally Stiffened Panel Layout and Riveted Pantel 
Configuration 
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D. PANEL FRACTURE
 

Following the final inspection in the riveted panel configuration,
 

the stringer sections were removed from the subpanels and the web
 

section broken off to reveal the actual flaws. Flaw length,
 

depth, and location were measured visually using a traveling
 

microscope and the results recorded in the actual data file. Four
 

of the flaws were not revealed in panel fracture. For these, the
 

actual surface length was recorded and attempts were made to grind
 

down and open up these flaws. This operation was not successful
 

and all of the flaws were lost.
 

E. DATA ANALYSIS
 

1. Data Tabulation
 

Actual crack data and NDT observations were keypunched and input
 

to a computer for data tabulation, data ordering, and data analy­

sis sequences. Table 111-3 lists actual crack data for integrally
 

stiffened panels. Note that the finish values are rms and that
 

all dimensions are in inches. Note also that the final panel
 

thickness is greater in some cases after etching than before. This
 

lack of agreement is the average of thickness measurements at three
 

locations and is not an actual thickness increase. Likewise the
 

change in surface finish is not significant due to variation in
 

measurement at the radius location.
 

Table 111-4 lists nondestructive test observations as ordered
 

according to the actual crack length. An X "0" indicates that there
 

were no misses by any of the three NDT observers. Conversely, a
 

"3" indicates that the crack was missed by all observers.
 

2. Data Ordering.
 

Actual crack data (Table 111-3) xTere used as a basis for all sub­

sequent calculations, ordering, and analysis, Cracks were init­

ially ordered by decreasing actual crack length, crack depth, and
 

crack area. These data were 
then stored for use in statistical
 

analysis sequences.
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Table 111-3 Actual Crack Data, Integrally Stiffened Panels 

PANEL 
NO. 

CRACK 
NO. 

CRACK 
LENGTH 

CRACK 
DEPTH 

INITIAL 
FINISH THICKNESS 

FINAL 
FINISH THICKNESS 

CRACK FCSITICN 
X Y 

I B 
I C 
2 0 
3 C 
4 13 
4 C 
5 A 
5 0 
E A 
6 C 
6 0 
7 A 
7 8 
7 C 
8 A 
8 A 
8 a 
8 C 
8X9 
BXD 
9 A 
9 8 
S B 
9 C 
9 0 
9 0 

10 A 
11 0 
12 8 
13 B 
13 0 
14 A 
14 C 
15 A 
15 0 . 
16 B 
16 C 
16 D 
17 A 
17 C 
17 0 
18 A. 
18 8 
18 C 
19 A 
19 B 
19 C 
19 V 
20 A 
21 D 
22 C 
23 8 
23 C 
24 A 
24 0 
25 A 
25 C 
26 A 
26 8 
26 0 
27 A 
27 8 
27 0 
28 B 
28 C 
26 U 
29 A 
29 8 
29 C" 
29 0 
31 -

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
4E 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
E1 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

1.157 
2.13 
0.182 
0.531 
0'.175 
0.170 
0.OE5 
0.170 
0.174 
0.100 
0.172 
n.179 
3.180 
0.142 
C.142 
0.050 
0.183 
C.194 
0.200 
0.166 
0.187 
0.149 
0.202 
0.105 
0.163 
G.100 
0.262 
0.273 
0.269 
0.271 
0.273 
0.275 
0.286 
0.272 
0.275 
0.276 
0.208 
0.302 
0c.2E5 
0.275 
0.266 
0.278 
0.2g1 
0.321 
0.277 
0.2E9 
0.2E8 
0.288 
0.561 
0.5E9 
0.593 
0.551 
0.549 
0.576 
0.576 
0.566 
0.563 
0.528 
0.560 
0.57g 
0.572 
0.573 
0.550 
0.578 
0.542 
0.612 
0.569 
0.476 
0.684 
0.451 
0.255 

0.030 
0.037 
3.051 
0.095 
0.028 
0.032 
0.032 
0.032 
0.033 
0.033 
0.036 
0.039 
0.030 
0.036 
0.027 
0.027 
0.039 
0.046 
0.046 
0.046 
U,040 
0.034 
0.043 
0.042 
0.037 
0.037 
0.048 
0.055 
0.051 
0.052 
0.053 
0.051 
0.062 
0.51 
0.053 
0.050 
0.038 
0.080 
0.043 
0.049 
0.049 
0.046 
0.052 
0.060 
0.053 
0.047 
0.054 
0.056 
0.064 
0.065 
0.070 
-0.043 
0.042 
0.061 
0.059 
0.047 
0.050 
0.045 
0.055 
0.076 
0.056 
0.059 
0.048 
0.054 
0.052 
0.073 
0.063 
0.034 
0.056 
0.062 
0.047 

52 
52 
38 
57 
47 
47 
77 
77 
65 
65 
65 
58 
58 
58 
72 
72 
72 
72 
72 
72 
73 
73 
73 
73 
73 
7' 
37 
17 
32 
28 
28 
31 
31 
39 
39 
53 
53 
53 
38 
38 
38 
38 
38 
38 
35 
35 
35 
35 
30 
33 
20 
31 
31 
32 
32 
44 
32 
34 
34 
34 
29 
29 
29 
33 
33 
33 
52 
52 
52 
52 
18 

0.278C 
0.278 
0.2800 
0.2790 
0.2790 
0.2790 
0.279C 
0.2790 
0.278C 
0.2780 
0.2780 
0.277C 
0.2770 
0.277C 
0.2780 
01.2780 
0.2780 
0.2780 
0.278C 
0.2780 
0.2790 
0.2791 
0.2790 
0.2790 
0.2790 
0 .2790 
0.280C 
0.280e 
0.2800 
0.2790 
0.2790 
0.280 
0.280E 
0.279C 
0.2790 
0.2800 
0.2800 
0.280 
0.2760 
0.276C 
0.2760 
0.2800 
0.280 
0.2800 
0.2810 
0.2810 
0.2810 
0.2810 
0.2800 
0.2780 
0.2800 
0.279C 
0.2790 
0.2800 
0.2800 
0.2802 
0 .3040 
0.2790 
0.2790 
0.2790 
0.2760 
0.276C 
0.2760 
0.2782 
0.2780 
0.278 
0.2790 
0.2796 
0.2790 
0.2790 
0.2780 

32 
22 
18 
30 
32 
30 
32 
42 
38 
40 
46 
22 
30 
40 
26 
26 
30 
24 
30 
30 
28 
22 
22 
26 
26 
26 
20 
22 
24 
20 
20 
24 
20 
26 
22 
22 
23 
18 
36 
20 
24 
30 
18 
25 
12 
25 
26 
16 
22 
52 
2C 
22 
22' 
16 
32 
44 
32 
25 
14 
22 
22 
20 
25 
i 
24 
18 
30 
41 
38 
30 
18 

0.281C 
0.2810 
0.2840 
0.282E 
0.2810 
0.2806 
0.280C 
0.279C 
0.281C 
0.2830 
0.2830 
0.2790 
0.275C 
0.2790 
0.2800 
0.280C 
0.280C 
0.2800 
0.2800 
01.2800 
0.2790 
0.2790 
0.2790 
0.2790 
0.2790 
0.2790 
0.2830 
0.2810 
0.279C 
0.2830 
0.281C 
0.2820 
0.281C 
0.281E 
0.281C 
0.282C 
0.2820 
0.2820 
0.2680 
0.2820 
0.281C 
0.2820 
0.2830 
0.2840 
0.2820 
0.2820 

"0.202 
•0.2820 
0.2830 
0.2790 
0.2800 
0.200 
0.2820 
0.285E 
0.2790 
0.280C 
0.3040 
0.2796 
0.2780 
0.279E 
0.278C 
0.2770 
0.2776 
0.2780 
0.2780 
0.279C 
0.2770 
0.2780 
0.278E 
0.280C 
0.2780 

4.07 
1.72 
3.04 
2.96 
3.00 
Z.01 
1.S7 
2.08 
1.73 
1.70 
4.45 
4.23 
1.68 
1.73 
1.67 
4.57 
2.62 
3.57 
1.39 
4.50 
2.47 
3.74 
4.60 
1.66 
2.63 
4.00 
1.46 
2.44 
.3.04 
1.92 
3.80 
4.19 
3.98 
3.89 
1.36 
2.40 
1.55 
4.46 
1.72 
3.87 
1.37 
4.43 
1.37 
4.47 
1.58 
4.33' 
4.56 
1.45 
4.00 
2.96 
3.47 
3.90 
3.92 
1.60 
4.00 
2.54 
3.57 
1.57 
4.36 
1.50 
4.27 
1.67 
4.58 
2.50 
4.43 
1.72 
4.16 
1".61 
1.59 
4.37 
1.97 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
"G. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
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Table -11-3 (concl) 

31 0 73 0.571 0.034 22 0.2776 22 0.277C 2.21 -0. 
35 C 74 0.274 0.068 35 0.2796 35 0.279C 3.78 -0. 
36 A 75 0.126 0.025 45 0.2786 42 0.2780 1.78 -0. 
36 A 76 0.179 0.038 45 0.2780 42 0.278C 4.51 -0. 
36 C 77 0.186 0.038 45 0.2780 33 0.2780 2.77 -0. 
36 D 78 0.193 0.047 45 0.2786 40 0.2786 4.20 -0. 
37 A 79 0.140 0.029 50 0.2790 50 0.2786 2.46 -0. 
37XA 80 0.215 0.029 50 0.2796 50 0.2780E 4,69 -0. 
37 8 81 0.113 0.024 50 0.279C 40 0.2790 1.51 -0. 
37 B 82 0.182 0.045 50 0.2796 46 0.27Sf 3.54 -Go 
37 C 83 0.109 0.026 50 0.2790 41 0.2790 1.24 -0. 
37 C 84 6.063 0.0±6 50 0.2790 41 0.279C 2.05 -6. 
37 0 85 0.164 0.045 50 0.2790 18 0.2796 3.62 -0. 
37 D 86 0.190 0.024 50 0.2790 18 0.2790 4.64 -0. 
38 A 87 0.089 0.018 42 0.2790 24 0.279C 1.65 -0. 
38 A 88 0.175 0.039 42 0.2796 24 0.2790 4.58 -F. 
38 8 89 0.078 0.016 42 0.2796 16 0.2786 2.80 -0. 
38 C s0 0.140 0.031 42 0.2796 21 0.279C 2.07 -0. 
38 C Si 0.164 0.036 42 0.2790 21 0.2796 4.75 -0. 
38 D 92 0.169 0.033 42 0.279, 29 0.278C 1.19 -0. 
38 D 93 0.125 0.024 42 0.2796 29 0.2781 3.80 -0. 
39 A 94 0.274 0.056 17 0.2786C 17 0.2786 1.72 -0. 
39 C 95 0.181 0.042 19 0.279C 19 0.2796 1.26 -0. 
32 0 97 0.181 0.049 24 0.2790 24 0.2790 2.17 -0. 
39 0 98 0.142 0.030 24 0.2796 24 0.279 4.62 -0. 
40' A 99 0.112 0.026 50 0.2780 50 0.2796 4.03 -0. 
40 8 100 0.172 0.040 50 0.2786 32 0.2776 1.54 -0. 
40 8 1c1 0.134 0.033 50 0.2780 32 0.2776 2.56 -0. 
40 C 102 0.114 0.024 50 0.2780 36 0.2786 1.27 -0. 
40 D 103 0.061 0.009 50 0.2780 34 0.2770 3.71 -0. 
40 D 104 0.1E0 0.037 50 0.278C 34 0.2770 4.46 -0. 
41 A 105 0.183 0.038 44 0.2790 2e 0.279 2.05 -0. 
41 A 106 0.120 0.022 44 0.2790 28 0.2796 4.62 -C. 
41 8 107 0.127 0.028 44 0.2790 25 0.2790 1.34 -0. 
41 8 108 0.O07 0.021 44 0.2796 25 0.2796 4.04 -0. 
41 C 102 0.136 0.033 44 0.2790 22 0.2790 1.56 -0-' 
41 C 110 0.260 0.048 44 0.2790 22 0.2796 4.84 ,t, 
42 8 111 0.182 0.044 33 0.2786 30 0.2786 2.46 
42 C 112 0.126 0.028 33 0.2780 32 0.278C 2.18 -0. 
42 C 113 0.158 0.041 33 0.2780 32 0.2786 4.74 -0. 
42 0 114 0.191 0.047 33 0.2780 35 0.2780 1.35 -0. 
42 D 115 0.098 0.032 33 0.2780 35 0.2786 4.03 -0. 
43 A 116 0.415 0.100 30 0.2800 36 0.2786 265 -0. 
43 A 117 0.184 0.041 30 0.2800 36 0.278C 4.60 -0. 
43 B 118 0.177 0.041 30 0.2800 24 0.2776 1.54 -0. 
43 8 119 0.163 0.036 30 0.2800 24 0.2770 4.11 -0. 
43 C 120 0.095 0.0±9 30 0.280C 30 0.2796 3.53 -0. 
43 0 121 0.076 0.018 30 0.2806 22 0.2786 1.88 -0. 
43 D 122 0.260 0-023 30 ­ 0.2800 22 0.2780 4.40 -0. 
44 A 123 0.166 0.019 33 0.279C 21 0.2790 3.72 -0. 
44 A 124 0.178 0.036 33 0.2790 21 0.279C 4.69 -0. 
44 8 125 0.138 0.024 33 0.27A0 23 0.2770 2.13 -0. 
44 S 126 0.132 0.031 33 0.2790 23 0.2776 4.23 -0. 
44 C 127 0.160 0.037 33 0.2790 24 0.2780 1.07 -0. 
44 C 128 0.113 0.026 33 0.2790 24 0.278C 4.a6 -0. 
44 D 129 0.179 0.040 33 0.2790 21 0.278C 1.46 -0. 
44 0 130 0.147 0.033 33 0.2790 21 0.2780 3.52 -0. 
45 A 131 0.164 0.034 28 0.2770 25 0.2796 1.62 -0. 
45 8 132 0.162 0.036 28 0.2776 29 0.2766 4.27 -0. 
45 C 133 0.161 0.033 28 0.2770 23 0.278C 4.42 -0. 
46 A 135 0.083 0.017 31 0.2780 24 0.2770 3.46 -0. 
46 A ±36 0.176 0.036 31 \0.2780 24 0.2771 4.55 -0. 
46 C 137 8.158 0.035 31 d.2780 25 0.278E 1.44 -0. 
46 C 138 0.085 0.017 31 0.2780 25 0.2780 2.33 -0. 
46 0 139 0.184 0.045 31 0.2780 23 0.2770 4.54 -0. 
47 A 140 0.136 0.026 33 0.2780 28 0.2786 2.43 -0. 
47 A 141 0.087 0.017 33 0.2780 28 0.2786 4.72 -0. 
47 8 142 0.167 0.031 33 0.2780 27 0.2780 1.18 -0. 
47 B 143 0.059 0.011 33 0.2780 27 0.2786 3.43 -0. 
47 C 144 0.126 0.030 33 0.2780 20 0.2780 3.58 -0. 
47 D 145 0.119 0.035 33 0.2780 26 0.2780 2.54 -0. 
47 0 146 0.187 0.044 33 0.2780 26 0.2786 4.75 -0. 
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Table 11-4 NDT Observations, Integrally Stiffened Panels
 

PENETRANT ULTRASONIC EDDY CURRENT 

INSPECTION 
SEQUENCE 1 2 3 1 2 3 1 2 3 

CRACK 
NUMBER 

ACTUAL 
vALUE 

70 .684 0 0 0 0 0 0 0 1 0 
67 *612 0 1 0 0 0 0 3 0 1 
52 .593 3 0 0 3 0 0 3 1 1 
61 .579 0 0 0 0 0 0 1 0 0 
65 .578 0 0 0 0 0 0 1 0 3 
55 .576 0 0 0 0 0 3 1 0 0 
56 9576 0 0 0 0 0 0 0 0 1 
63 .573 1 0 0 0 0 0 2 1 3 
62 .572 0 0 0 0 0 0 2 0 0 
73 .571 0 1 0 0 0 3 2 0 3 
51 .569 1 0 0 2 0 0 0 0 2 
68 .569 0 0 0 0 0 0 0 0 0 
57 .566 1 0 0 1 0 0 0 0 2 
58 .563 0 0 0 1 0 0 0 0 0 
50 .561 0 0 0 0 0 0 0 0 0 
60 .560 0 1 0 0 o d 0 0 6 
53 .*551 0 0 0 0 0 0 3 2 .3 
54 .549 0 0 0 0 0 0 1 11 1 
66 .542 0 0 0 1 0 0 0 0 0 
4 .531 0 1 0 0 0 0 0 0 0 

59 .528 0 1 0 0 0 3 0 1 0 
69 .476 0 0 0 0 0 0 .2 0 0 
71 .451 0 0 -0 0 0 3 0 0 1 
44 .321 0 0 0 0 0 0 2 1 1 
38 a302 0 0 0 0 0 0 0 1 0 
43 .291 0 1 0 '0 0 0 1 0 1 
49 .288 1 0 0 0 0 0 1 0 1 
33 .286 3 1 0 3 0 2 3 0 0 
46 .277 0 0 0 .0 1. 0 2 3 3 
.36 *276 0 1 0 1 0 0 2 2 1 
42 .276 0 0 0 1 0 0 1 1 0 
32' .275 0 1 2 0 0 0 1 1 1 
35 .275 0 0 0 0 1 0 '2 1 1 
40 .275 0 1 0 0 0 0 1 0 2 
74 .274 0 0 0 0 0 0 2 2 1 
94 .274 0 0 1 1 0 3 0 0 0 
31 .273 0 1 0 0 0 0 1 1 2 
28 9273 0 2 3 0 0 0 0 0 0 
34 .272 0 0 0 0 0 0 2 1 1 
30 .271 0 0 3 0 1 0 2 0 3 
47 .269 1 0 0 0 0 0 1 0 1 
29 .269 0 1 2 0 0 0 2 0 2 
48 *268 0 1 2 1 0 0 1 1 2 
41 .266 0 0 0 0 0 0 1 1 1 

111-23 



Table 11Y-4 (cont) 

CK ACT 
NO VAL 1 2 3 1 2- 3 1 2 3, 
27 ,262 0 0 0 -0 0 0 2 2 1 
80 .215 3 0 0 0 0 3 0 0 0 
37 '208 0 0 0 0 1 0 3 3 3 
23 .202 0 0 1 1 0 0 0 0 2 
19 .200 0 0 0 0 0 0 1 1 3 

110 .200 1 0 0 0 0 0 1 0 0 
122 .200 1 0 1 0 0 0• 0 0 2 
24 .195 1 0 1 0 0 0 1 0 0 
18 .194 0 0 1 0 0 0 0 0 0 
2 .193 1 1 3 0 0 0 0 0 0 

78 .193 0 0 0 0 0 0 0 0 0 

114 -­ 91 0 0 0 0 0 0 1 0 1 
86 .190 3 3 3 0 0 3 1 1 2 
21 .187 0 0 3 0 2 0 0 0 0 
146 .187 0 0 0 0. 0 3 2 0 1 
77 *186 0 0 0 0 0 0 0 0 0 
139 *184 2 0 0 0 0 0 1 0 2 
117 o184 0 0 0 0 0 0 0 0 0 
17 .183 0 0 0 0 0 0 1 1 0 

105 .183 0' 0 0 0 2 3 2 1 0 
111 '.182 3 1 2 0 0 0 0 1 3 
3 .182 0 0 0 0 0 0 0 0 0 

82 .182 3 0 0 0 0 0 1 0 3 
95 .181 0 0" 1 1 0 0 0 0 2 
97 .181 2 2 1 1 0 3 1 1 3 
13 .180 0 6 0 1 2 2 1 2 2 

129 .179 0 0 1 1 0 0 1 0 3 
12 .179 0 0 0 0 0 1 1 0 1 
76 .179 0 0 0 0 0 0 2 1 2 

124 .178 0 0 0 0 0 3 1 0 0 
118 .177 0 0 0 0 0 0 0 1 2 
136 .176 2 1 -0 0 3 3 1 0 2 
88 '175 3 3 3 1 0 0 2 2 2 
5 .175 0 1 0 0 1 3 2- 1 2 
9 .174 0 0 1 1 0 0 1 0 1 

11 .172 1 1 3 0 2 3 0 0 1 
100 0172 0 0 0 0 0 0 - 1 0 1 
8 1170 0 1 0 0 1 0 0 0 1 
6 .170 0 1 0 0 1 0 0 0 0 

92 .169 3 1 1 0 1 0 3 3 3 
142 .167 0 1 0 1 0 0 1 0 0 
20 .166 0 1 0 0 1 0 1 0 2 
91 .164 3 2 3 0 0 0 2 2 3 

131 .164, 2 0 1 0 1 0 0 0 0 
85 .164 3 3 3 0 2 3 1 1 3 
25. s163 0 2 3 0 2 0 -1 0 0 
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Table 11-4 (coneZ) 

CK ACT 
NO VAL 1 2 ,-3 1 2 3 1 2 3 

119 .163 0 1 1" " U 0 3 " 	 0 ± 0 
1 0 0 0 0 1 3132 .162 0 1 

0 	 2133 .161 0 1 1 0 0 	 1 1 
127 .160 1 1 1 0 0 3 	 0 0 0 
104 .160 0 0 0. 0 1 3 	 0 0 2 

10 .160 0 0 1 0 0 0 0 0 0 
2 0 2137 .158 3 2 0 0 2 3 

113 	 .158 0 1 0 0 0 0 1 0 0 
0 0 11 ,157 1 O 3 0 0 0 

0 	 0
22 .149 1 2 2 - 0 0 0 2 
0 0 1 0 .3130 .147 0- 0 1 1 

3 	 3
98 ,142 2 3 3 1 3 1 1 


1 2 1 0 0 0
14 .142 0 0 0 

0 	 3
15 .142 0 0 2 0 2 2 3 


90 .140 1 2 3 <1 0 3 3 2 3
 
1 3
79 .140 1 1 0 0 3 3 2 


145 	 .139 2 0 0 0 1 3 2 2 2
 
1 1 3
125 .138. 0 0 0 0 0 3 


140 .136 0 0 0 0 0 0 	 1 1 2
 

109 .136 0 0 0 0 0 0 	 0 0 3
 
10.1 .134 1 1 0 .0 0 3 0 0 2
 

126 *.132 0 0" 0 0 1 0 1 0 3
 
107 .127 0 0 0 0 3 3' 	 2 3 3
 
144 .126 0 2 0 0 0 Q 	 2 0 2
 
75 . 126 3 0 1 3 0 3 1 2 3
 

112 .126 2 0 0 0 0 0 0 0 0
 

93 .125 1 -0 1 0 0 0 2 3 3
 
106 .120 0 0 0 3 3 3 3 3 3
 
1D2 .114 1 0 0 0 0 0 0 1 3
 
128 .113 0 0 1' 0 0 3 	 1 0 3
 
81 .113 1 "0 0 0 1 3 2 3 .3
 
99 .112 0 0 0 3 0 3 3 1 2
 
83 0109 2 0 0 0 1 3 0 2 3
 

123 o106 0 1 0 2 3 3 3 3 3
 
26 .100 0 0 1 1 0 3 0 1 .0
 
115 .098 3 1 1 0 0 3 	 2 0 1
 
108 .097 0 0 0 3 3 3 	 2 3 .3
 
120 	 .095 1 0 2 3 3 1 3. 3 3
 
87 a089 0 2 0 2 3 3 3 3 2
 

141 .087 1 2 1 3 .3- 3 3 3 1
 
138 0085 3 0 1, 0 3 3 3 3 3
 

7 .085 0 1 0 1 3 3 0 1 0
 

135 .083 3 2 2 3 3 3 3 3 3.
 
89 .078 3 0 2 *3 .3 3 3 , 3 3
 

121 .076 0 0 1 3 3 3 	 3 3 2
 
84 .063 3 0 1 3 2 3 2 3 3
 

103 o061 0 2 1 3 3 3 3 3 3
 
143 *059 3 1 1 3 3 3 3 3 2
 
16 .050 0 3 3 0 0 0 2 1 1
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3. Statistical Analysis
 

There are four possible results when an inspection is performed:
 

1) detection of a defect that is present (true positive)
 

2) failure to detect a defect that is not present (true negative)
 

3) detection of a defect that is not present (false positive)
 

4) failure to detect a defect that is present (false negative)
 

i STATE OF NATURE]
 

Positive Negative
 

Positive Positive sitive
 
OF Pos_'[TEST (Tx) NATURE[ _.____ve. 

True
NegaivepN~atie /
Negative Fale- Negative
 

Although reporting of false indications (false positive) has a
 

significant impact on the cost and hence the practicality of an
 
inspection method, it was beyond the scope of this investigation.*
 
Factors conducive to false reporting, i.e. low signal to noise
 
ratio, were minimized by the initial work to optimize inspection
 
techniques. An inspection may be referred to as a binomial event
 

if we assume that it can produce only two possible results, i.e.
 
success in detection (true positive) or failure to detect (false
 
negative).
 

Analysis of data was oriented to demonstrating the sensitivity and
 

reliability of state-of-the-art NDT methods for the detection of
 
small, tightly closed flaws. Analysis was separated to evaluate
 
the influences of etching and interference caused by rivets in the
 

inspection area. Flaw size parameters of primary importance in the
 
use of NDT data for fracture control are crack length (2C) and
 
crack depth (a). Analysis was directed to determining the flaw
 
size that would be detected by NDT inspection with a high probability
 
and confidence.
 

*For a discussion on false reporting see Jamieson, John A., et al.:
 

Infrared Physics and Engineering, McGraw-Hill Book Company Inc,
 
page 330.
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To establish detection probabilities from the data available,
 

traditional reliability methods were applied. Reliability is
 
concerned with the probability that a failure will not occur when
 
an inspection method is applied. One of the ways to measure
 
reliability is to measure the ratio of the number of successes
 
to the number of trail (or number of chances for failure). This
 
ratio times 100% gives us an estimate of the reliability of an
 
inspection process and is termed a point estimate. A point estimate
 
is independent of sample size and may or may not constitute a
 
statistically significant measurement. If we assume a totally
 
successful inspection process (no failures) we may use standard
 
reliability tables to select a sample size. A reliability of 95%
 
at 95% confidence level was selected for processing all combined
 
data, and analyses were based on these conditions. For a 95%
 
reliability at 95% confidence level, 60 successful inspection trials
 
with no failure are required to establish a valid sampling and
 
hence a statistically significant data point. For large crack sizes
 
where detection reliability would be expected to be high, this
 
criteria would be expected to be reasonable. For smaller crack
 
sizes where detection reliability would be expected to be low, the
 
required sample size to meet the 95% reliability/95 confidence
 
level criteria would be very large.
 

To establish a reasonable sample size and to maintain some con­
tinuity of data we held the sample size constant at 60 NDT obser­

vations (trials). We then applied confidence limits to the data
 
generated to provide a basis for comparison and analysis of detection
 
successes, and to provide an estimate of the true proportion of
 

cracks of a particular size that can be detected. Confidence
 
limits are statistical determinations based on sampling theory
 
and are values (boundaries) within which we expect the true reliabi­
lity value to lie. For a given sample size, the higher our
 
confidence level, the wider our confidence simply means that the
 
more we know about anything, the better our chances are of being
 
right. It is a mathematical probability relating the true value
 
of a parameter to an estimate of that parameter and is based on
 
history'repeating itself.
 

Plotting Methods
 

In plotting data graphically, we have attempted to summarize the
 
results of our studies in a few rigorous analyses. Plots were
 
generated by referring to the tables of ordered values by actual
 

flaw dimension, i.e., crack length.
 

Starting at the longest crack length, we counted down 60 inspection
 
observations and calculated a detection reliability (successes
 
divided by trails). A dingle data point was plotted at the largest
 
crack (length in this group). This plotting technique biases
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data in the conservative direction. We then backed up 30 obser­

vations, counted down 60 observations and plotted the data point
 

at the longest crack in this group. The process was repeated for
 

the remaining observations in each inspection operation. By use
 

of the overlapping sampling technique, the total amount of data
 

required could be reduced. The overlapping method is applicable
 

since all observations are independent and hence may be included
 

in any data sampling group. An added advantage is the "smoothing"
 

of the curve resulting from such a plotting technique.
 

5. Calculation of Confidence Limits
 

The analysis and data plotting methods used to assess the variation
 

in flaw detection reliability with flaw dimension becomes increas­

ingly l&ss rigorous as detection failures increase. To maintain
 

continuity of data analysis and penetration using the same analysis
 

and plotting methods, we have calculated and plotted confidence
 

limits for each plot point using the available data sample in that
 

sample group. Confidence limits are values within which we expect
 

the true reliability value to be if an infinitely large sample is
 

taken. For a given sample size, the higher our confidence level,
 

the wider our confidence-limits. Confidence limits are statistical
 

determinations based on sampling theory.
 

are
The statistics that are used to determine confidence limits 


dependent up the distribution of whatever characteristic we are
 

measuring. Data based on success/failure criteria can be best
 

described statistically by applying the binomial distribution.
 

The normal, Chi-square and Poisson distributions are sometimes
 

used as approximations to the binomial and are selected on the
 

basis of available sample size. If the sample size is held
 

constant, confidence limits may be applied to these data to establish
 

the true reliability values. A binomial distribution analysis
 

was applied to the data to find the lower or one-sided confidence
 

limit based on the proportion of successes in each sample group.
 

Lower confidence limits were calculated by standard statistical
 

methods* and is compatible with the method described by Yee et al.+
 

The lower confidence level, Pe , is obtained by solving the equation:
 

*Alexander McFarlane Mood: Introduction to the Theory of Sta­

tistics. McGraw-Hill Book Company, Inc, 1950, pp 233-237. 

B.G.W. Yee, J. C. Couchman, F. H. Chang, and D. F. Packman:
 

Assessment of NDE ReliabZity Data. CR-134834. General
 
Dynamics Corporation, Fort Worth Division, September 1975.
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n-I 	 N-i
 

i=o P 

where 	 G is the confidence level desired,
 
N is the number of tests performed,
 
n is the number of successes in N tests,
 

and 	 PI is the lower confidence level.
 

Lower confidence.limits were determined at a 
confidence level of
 
95% (G=.95) using 60 trials (N=60) for all calculations. The lower'
 
confidence limits are plotted as 
(-) points on all graphical
 
presentations of data reported herein.
 

F. DATA RESULTS
 

The results of inspection and data analysis are shown graphically
 
in Figures 111-11, 111-12 and 111-13. The results clearly indicate
 
an influence of inspection geometry on crack detection reliability
 
when compared to results obtained on flat aluminum panels.*
 
Although some of the change in reliability may be attributed to
 
a change flaw tightness and/or slight changes in the angle of flaw
 
growth, most of the change is 
attributed to geometric interference
 
at the stringer radius. Effects of flaw variability were minimized
 
by verifying the location of each flaw at the tangency point of the
 
stringer radius before accepting the flaw/inspection data. Four
 
flaws were eliminated by such analysis.
 

Changes in detection reliability due to the presence of rivets
 
as 
revealed in the Sequence 3 evaluation further illustrates that
 
obstacles in the inspection area will influence detection results.
 

* Op cit. Ward D. Rummel, Paul H. Todd, Jr., Sandor A. Frecska, 

and Richard A. Rathke.
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IV. EVALUATION OF LACK OF PENETRATION (LOP) PANELS 

Welding is a common method of joining major elements in the fab­
rication of structures. Tightly closed flaws may be included in
 
a joint during the welding process. A lack of penetration (LOP)
 
flaw is one of several types of tightly closed flaws that can form
 
in a weld joint and is representative of the types that commonly
 
occur.
 

Lack of penetration flaws (defects) may be the product of slight
 
variations in welding parameters or of slight variations in welding
 
parameters or of slight variations in weld joint geometry and/or
 
fit up. Lack of penetration defects are illustrated schematically
 

Lack of Penetration
 

(a) 	Straight Butt Joint Weldment
 
with One Pass from Each Side
 

Lack 	-of Penetration
 

(b) Straight Butt Joint Weldment
 
with Two Passes from One Side
 

Figure II-I Typical Weldient Lack of Penetration Defects
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Figure IV-l(a) is the result of a failure to penetrate the weld
 

joint fully by single passes from each side of the joint. This
 

type of defect is also termed lack of fusion and may be referred
 

to as such in the literature. Figure IV-l(b) is the result of
 

a failure to penetrate the weld joint fully by two passes from
 

the same side of a joint.
 

one of the most,
A lack of penetration defect has been shown to be 


difficult flaws to detect by conventional nondestructive inspection
 

Because of the high residual compressive stresses
techniques. 

present in weldments containing this defect and the tendency 

of
 

the defect to form a diffusion bond under its combined heat 
and
 

stress exposure, it is possible to miss it using X-radiographic 
and
 

Even if the defect is open to the
ultrasonic inspection methods. 


surface-, it is possible for the joint to be so tightly closed that
 

Various investigators have conduct­penetrants will not reveal it. 


ed studies to enhance L.O.P. defect detection*. A difficult
 

experiment variable in such programs is the tightness of the defect.
 

Lack of penetration in straight butt joint weldments with one pass
 

from each-side was-selecte& for-avaluation. This configuration
 

provided the greatest option in varying defect location through
 

the thickness of the weld, i.e. open, near the surface and buried,
 

and provided the greatest chance for obtaining tightly closed flaws.
 

After the flaw type was established, a program plan for test panel
 

preparation, evaluation and analysis was established as shown
 

schematically in Figure IV-2.
 

*B. G. Martin and C. J. Adams: Detection of Lack of Fusion in
 

Aluminum Alloy Weidments by Ultrasonic Shear Waves. Technical
 

Douglas Aircraft Company, 1965.
Paper No. 3499. 


Detection of Lack of Fusion Using Opaque Additives,
J. L. Cook: 

Contract NAS8-287D8. McDonnell Douglas
Phase I Progress Report. 


Astronautics Company, November 1972.
 

Definition of Mutually Optimum NDI and Proof Test 
Criteria for
 

2219 Aluminum Pressure Vessels, Work in progress, Contract 
NAS3­

17790, Martin Marietta Aerospace, Denver, Colorado.
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A. SPECIMEN PREPARATION
 

The direct current, gas tungsten arc (GTA) weld technique was
 

selected as the most appropriate method for producing LOP flaws in
 

commonly used in aerospace condtruction.
2219-T87 panels and is 

The tungsten arc allows independent variation of current, voltage,
 

This allows for a specific
electrode tip shape, and weld travel. 


reproduction of weld conditions from time to time as,well as
 

several degrees of freedom for producing nominally proportioned
 

welds and specific weld deviations. The dc GTA can be relied on to
 

produce a bead of uniform depth and width and always produce a
 

single specific response to a programmed change in the course of
 

welding.
 

to measure or observe the presence of
In experiments that are run 


lack of penetration flaws, the most trying task is to produce the
 

LOP predictably. Further, a control is desired that can alter
 

the length and width and sometimes the shape of the defect.
 

Commonly an LOP is produced deliberately by a momentary reduction
 

of current or some other vital weld parameter. Such a reduction of
 

heat naturally reduces the penetration of the melt. But even
 

when the degree of cutback and the duration of cutback are precisely
 

executed, the results are variable.
 

Instead of varying the weld process controls to produce the desired.
 

to locally vary the weld joint thickness.
LOP defects, we chose 

At a desired defect location, we locally increased the thickness
 

of the weld joint in accordance with the desired height and
 

length of the defect.
 

A constant penetration (say 80%) in a plate can be decreased to
 

30% of the original parent metal plate thickness when the arc hits
 

It will then return to the original
this thickness increase. 

runs off the reinforcement pad.
penetration, after a lag, when it 


The height of the pad was programmed to vary the LOP size in a
 

constant weld run.
 

completed to determine the appropriate
An experimental program was 


pad configuration and welding parameters necessary to produce the
 

Test panels were welded in 4-foot lengths using
required defects. 

the direct-current gas tungsten arc welding technique and 2319
 

aluminum alloy filler wire. Buried flaws were produced by balanced,
 

607 penetration passes from both sides of a panel. Near-surface
 

and open flaws were produced.by unbalanced (i.e., 80%/30%) pene-


Defect length and
tration-passes from both sides of a panel. 


controlled by controlling the reinforcement pad con­depth were 

figuration. Flaws produced by this method are lune shaped as
 

iv-4
 

http:produced.by


illustrated by the in-plane cross-sectional microphotograph in
 
Figure IV-3.
 

The 4-foot long panels were x-radiographed to assure general weld
 
process control and weld acceptability. Panels were then sawed
 
to produce test specimens, 15.1 centimeters (6 in.) wide and
 
approximately 22.7 (9 in.) long with the weld running across the
 
15.1 centimeter dimension. At this point, one test specimen from
 
each weld panel produced was fractured to verify defect type and
 
size. The reinforcementpads were mechanically ground off to
 
match the contour of the continuous weld bead. Seventy 1/8-inch
 
(0.32) and seventy 1/2-inch (1.27-cm) thick specimens were produced
 
containing an average of two flaws per specimen and having both
 
open and buried defects in 0.250, 0.500, and 1.000-inch (0.64,
 
1.27, 2.54-cm) lengths. Ninety-three of these specimens were
 
selected for NDT evaluation.
 

B. NDT OPTIMIZATION
 

Following preparation of LOP test specimens, an NDT optimization
 
and calibration program was initiated. Panels containing 0.250­
inch long open and buried flaws in 1/8-inch and 1/2-inch material
 
thicknesses were selected for evaluation.
 

1. X-Radiography
 

X-radiographic techniques used for typical production weld inspect­
ion were selected for LOP panel evaluation. Details of the proced­
ure for evaluation of LOP panels are included in Appendix D. This
 
procedure was applied to all weld panel evaluations. Extra
 
attention was given to panel alignment to provide optimum exposure
 
geometry for detection of the LOP defects.
 

2. Penetrant Evaluation
 

The penetrant inspection procedure used for evaluation of LOP
 
specimens was the same as that used for evaluation of integrally
 
stiffened panels. This procedure is shown in Appendix A.
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Figure IV-3 
Schematic View of a Buried LOP in a Weld, with
Representative PhotomicrographCrossectional 
Views of Defect 



3. Ultrasonic Evaluation
 

Panels used for optimization of X-radiographic evaluation were also
 
used for optimization of ultrasonic evaluation methods. Comparison
 
of the techniques was difficult due to apparent differences in the
 
tightness of the defects. Additional weld panels containing
 
1/64-inch holes drilled at the centerline along the axis of the
 
weld were used to provide an additional comparison of sensitivities.
 

Single and double transducer combinations operating at 5 and 10
 
megahertz were evaluated for sensitivity and for recorded signal­
to-noise responses. A two-transducer automated C-scan technique
 
was selected for panel evaluation. This procedure is shown in
 
Appendix E. Following the Sequence 1 evaluation cycle (as-welded
 
condition) one of the weld beads was shaved off flush with the
 
specimen surface (Sequence 2, scarfed condition). The ultrasonic
 
evaluation procedure was again optimized. This procedure is shown
 
in Appendix F.
 

4. Eddy Current Evaluation
 

Panels used for optimization of x-radiographic evaluation were
 
also used for optimization,of eddy current methods. Depth of
 
penetration in the panel and noise resulting from variations in
 
probe lift-off were primary considerations in selecting an optimum
 
technique. A Vector III instrument was selected for its stability.
 
A 100-kilohertz probe was selected for evaluation of 1/8-inch
 
specimens and a 20-kilohertz probe was selected for evaluation of
 
1/2-inch specimens. These operating frequencies were chosen to
 
enable penetration to the midpoint of each specimens configuration.
 
Automated C-scan recording was accomplished with the aid of a
 
spring-loaded probe holder as shown in Figure IV-4. A procedure
 
was established for evaluating welded panels with the crown intact.
 
This procedure is shown in Appendix G. Following the Sequence 1
 
evaluation cycle (as-welded condition), one of the weld beads was
 
shaved off flush with the specimen surface (Sequence 2, scarfed
 
condition). The eddy current evaluation procedure was again
 
optimized. Automated C-scan recording was accomplished with the aid
 
of a spring-loaded probe holder as shown in Figure IV-5. The
 
procedure for eddy current evaluation of welded, flat panels is
 
shown in Appendix H.
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Spring-Loaded Eddy Current Scanning Probe Holder for Flat Panels 
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C. TEST SPECIMEN EVALUATION
 

Test specimens were evaluated by optimized x-radiographic, penetrant,
 

ultrasonic, and eddy current inspection procedures in three
 
separate inspection sequences. Two additional penetrant cycles
 

were completed after etching panels in the as-welded condition and
 

after etching in the scarfed condition. After familiarization
 

with the specific procedures to be used, the 93 specimens were
 

evaluated by three different operators for each inspection sequence.
 

Inspection records were analyzed and recorded by each operator
 

without a knowledge of the total number of defects present or
 

of the previous inspection results.
 

1. Sequence 1 - Inspection of As-Welded Specimens
 

The Sequence 1 inspection included x~radiographic, penetrant,
 

ultrasonic, and eddy current inspection procedures. One set of
 

x-radiographs was made. The radiographs were then evaluated
 

independently by three different operators. Each operator inter­

preted the x-radiographic image and reported his own results.
 

Penetrant inspection of specimens in the "as-welded" condition was
 

performed by one operator. Few defects were detected and results
 

were not included in the data. This inspection was somewhat
 

biased due to the mechanical grinding on the beads to remove the
 

reinforcement pads. The specimens were etched using a light
 

metallurgical etch ("Flicks" etchant solution), recleaned using
 

a mild alkaline cleaner, and reinspected. Penetrant inspection was
 

performed independently by three different operators who completed
 

the entir% penetrant inspection process and reported their own
 

results.
 

One set of C-scan ultrasonic and eddy current recordings were made.
 

The recordings were then evaluated and the results recorded
 

independently by three different operators.
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Inspections were carried out using the optimized methods establish­

ed and documented in Appendices A, D, E, and F. The locations
 
and relative magnitudes of the NDT indications were recorded by
 

each operator and coded for data processing.
 

2. Sequence 2 - Inspection after Scarfing
 

On completion of the first inspection sequence, the weld crown on
 

one side of each LOP panel was removed by scarfing. In all cases
 

the weld crown was removed flush with the parent metal surface.
 

For near-surface LOP flaws, the weld crown was removed from the
 

side nearest to the LOP to open it to the scarfed surface. Panels
 

were cleaned and inspected by the optimized NDT methods. One set
 

of x-radiographs was made. The radiographs were then evaluated
 

independently by three different operators. Each operator
 

interpreted the information on the x-ray film and reported his
 

own results.
 

Penetrant inspection was performed independently by three different
 

operators who completed the entire penetrant inspection procedure
 

and reported their own results. Scarfing of the weld crown
 

resulted in mechanical smearing of the aluminum material, thus
 

decreasing the chances for the penetrant to reveal the flaws.
 
The surface was therefore etched using a light metallurgical etch
 

("Flick's" etchant solution), recleaned using a milk alkaline
 

cleaner,-and reinspected by three different operators.
 

One set of C-scan ultrasonic and eddy current recordings was made.
 

The recordings were then evaluated independently by three
 

different operators. Inspections and readout were carried out
 

using the optimized methods established and documented in
 
Appendices A, D, E, and G. The locations and relative magnitudes
 

of the NDT indications were recorded by each operator and were
 

coded for data processing.
 

3. Sequence 3 - Inspection after Proof Loading
 

Following completion of Sequence 2, the LOP panels were proof­

loaded to approximately 90% of the yield strength for the weld.
 

This loading cycle was performed to simulate a proof load cycle
 

on functional hardware and to evaluate the enhancement of flaw
 

detection provided by NDT methods. Panels were cleaned and
 

inspected by optimized NDT methods. One set of x-radiographs was
 

made. This set was evaluated independently by three different
 

operators. Each operator interpreted the information on the x-ray
 

film and reported his own results.
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Penetrant inspections were performed independently by three
 

different operators who completed the entire penetrant inspection
 

procedure and reported his own results.
 

One set of C-scan ultrasonic and eddy current recordings was made.
 

The recordings were then evaluated independently by three different
 

operators. Inspections and readout were carried out using the
 

optimized methods established and documented in Appendices A, D,
 

E, and G. The locations and relative magnitudes of the NDT
 

indications were recorded by each operator and were coded for data
 

processing.
 

D. PANEL FRACTURE
 

Following final inspection in the post proof-loaded configuration,
 

the panels were fractured and the actual flaw sizes measured.
 

Flaw sizes- and- locations were-measured with the aid of a traveling
 

microscope and the results were recorded in the actual data file.
 

tip to the tip of the lunes were measured
The lengths from the 

actual flaw length and were used in processing
and recorded as 


data by the x-ray, ultrasonic, and eddy current methods. The
 

lengths of the flaw open to the panel surface were measured and
 

the actual flaw lengths and were used in processing
recorded as 

data by the penetrant method.
 

The heights of the lunes were measured and recorded as actual
 

flaw depth and were used in processing all data. In addition to
 

the plan view location within the panel, the depth or location
 

of the lune beneath the surface for buried flaws was recorded.
 

This depth below the surface was used as a criterion for accept­

ing data observed by the eddy current method. Figure IV-6
 

schematically shows the measurements taken for the LOP specimens.
 

E.- DATA ANALYSIS
 

1. Data Tabulation
 

Actual LOP flaw data and NDT observations were coded, keypunched,
 

and input to a computer for data tabulation, data ordering, and
 

data analysis sequences. Table IV-l lists actual flaw data for
 

LOP specimens. Note that all dimensions are in inches.
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a. Flaws Open to the Surface
 

b. Buried Flaws '"f; !"-"-) 

Figure IV-6 
Schematic Side View of a LOP (Lune) Flaw Showing Critical Dimensions
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Table IV-I Actual Flaw Data, LOP Panels 

PANEL CRACK CRACK CRACK INITIAL FINAL CRACK POSITION P" 
NO. NO. LENGTH DEPTH FINISH THICKNESS FINISH THICKNESS X Y DXDU 

IC 1 .517 .035 51 .1380 50 .1060 1.23 4.43 u.02% 
ICA 2 .504 .040 51 .1380 50 .1060 2.85 4.48 0.0201 
BCA 17 .542 .02 51 .1380 50 .1060 2.30 4.32 0.0224 

lOCA 19 .498 .04t 62 .1500 25 .1330 2.33 4.38 0.0175 
1ICA 20 .569 .047 62 .1500 25 .1330 3.82 4.38 0.0210 
1308 24 .194 .050 53 .1300 50 .1150 2.12 3.40 
160B 28 .133 .042 87 .1840 20 .1440 4.99 3.42 
160B 29 .231 .042 88 .1660 32 .1390 4.09 3.45 
1605 30 .268 .05u 88 .16o0 32 .1390 3.22 3.45 
19ACA 35 .346 .076 tO .1750 40 .1460 1.94 3.20 0.0108 
20CA 36 .318 .057 77 .1690 28 .1510 2.00 3.27 0.0055 
2108 37 .263 .053 76 .1720 50 .1510 2.86 3.28 
2108 38 .341 .066 7b ..720 50 .1510 1.95 3.27 
2208 39 .345 .065 65 .1620 30 .1540 3.92 3.27 
2208 40 .258 .057 65 .1620 30 .1540 3.01 3.27 
240B 4 .337 .073 81 .1780 36 .1430 2.98 3.20 0.0075 
2408 
24CA 

45 
46 

.309 

.336 
.064 
.061 

81 
81 

.1780 

.1780 
36 
36 

.1430 

.1430 
2.07 
1.17 

3.22 
3.24 0.0061 

260B 49 1.100 .091 51 .1730 25 .1400 4.50 4.27 
260a 50 1.158 .087 51 .1730 25 .1400 3.02 4.27 
2608 51 1.075 .08 51 .1730 25 .1400 1.56 4.25 
280B 55 1.175 .088 55 .1830 64 .1590 4.76 4.25 
280B 56 1.079 .090 55 .1830 64 1590 3.09 4.27 
2808 57 1.052 .093 55 .1830 64 .1590 1.42 4.22 
3OCA 61 1.156 .080 54 .1760 28 .1320 3.10 3.84 0.0078 
30CA o2 1.122 .071 54 .17t0 28 .1320 1.54 3.80 0.0095 
33CA 69 1.125 .073 49 .1870 65 .1250 4.98 3.85 0.0117 
33CA 70 1.150 .072 49 .1870 65 .1250 3.31 3.87 0.0126 
33CA 71 1.184 .070 49 .1870 65 .1250 1.60 3.85 0.0154 
360B 77 1.010 .105 53 .2050 20 .1660 1.4B 4.40 
308B 78 .987 .103 53 .2050 20 .1660 3.01 4.40 
360B 79 .91q .105 53 .2050 20 .1660 4.43 4.40 
3708 80 .916 .104 52 .1890 40 .. '1820 4.48 4.39 
370B 81 .890 .102 52 .1890 40 .1820 2.83 4.41 
370B 82 .850 .104 52 .1890 40 .1820 1.13 4.41 
380B 83 .825 .120 62 .2050 40 .1430 5.21 4.40 
3806 8k .790 .117 62 .2050 40 .1430 3.53 4.40 
3808 85 .q35 .116 62 .2050 40 .1430 1.95 4.40 
45CA 103 .885 .035 94 .1620 40 .1430 3.20 4.07 0.0269 
45CA 104 .929 .041 94 .1620 40 ..1430 1.59 4.07 0.0225 
5205 119 .698 .083 62 .1780 25 .1520 3.19 4.32 
5408 121 .734 .088 55 .1660 60 .1440 3.36 4.31 
540B 
550B 

122 
123 

.788 

.742 
.089 
.0o9 

55 
50 

.1660 

.1750 
60 
55 

.1440 

.1480 
1.86 
2.88 

4.29 
4.29 

5508 124 .749 .073 50 .1750 55 .1480 1.39 - 4.29 
561B 125 1.075 .1' 50 .1560 35 .1180 2.57 4.30 

5805 
6008 
60D 

127 
129 
130 

1.124-
1.158 
1.105 

.083 

.0"7 

.091 

51 
54 
54 

.1590 

.1460 
.1460 

40 
'0 
40 

.1230 

.1170 

.1170 

3.49 
3.04 
1.57 

4.32 
4.32 
4.32 

oSCA 142 .372' .059 115 .1740 35 .1430 2.99 3.40 0.0159 
70CA 143 .320 .055 100 .1650 45 .1490 2.90 3.45 0.0 9 
72CA 
72CA 

146 
147 

.297 

.288 
.070 
.054 

71 
71 

.1630 

.1630 
40 
40 

.1470 

.1470 
4.64 
3.77 

3.43 
3.42 

0.0197 
0.0259 

73CA 148 .322 .058 112 .1670 40 .1390 3.02 3.44 0.0176 
73CA 149 .267 .057 112 .1670 40 .1390 2.12 3.42 0.0171 
73CA 150 .343 .053 112 .1670 40 .1390 1.23 3.42 0.0225 
74CA 
74CA 

151 ­
152 

.262 

.250 
.060 
.052 

105 
l.5 

.1620 

.1.20 
35 
35 

.1490 
.1490 

4.82 
3.92 

3.42 
3.42 

0.0220 
0.0285 

74CA 153 .243 .050 105 .1620 35 .1490 3.04 3.42 0.025 
77CA 
78CA 

156 
157 

1.014 
.986 

.046 

.046 
91 
86 

.1430 

.1470 
150 
150 

.1330 

.1210 
3.51 
4.78 

4.34 
4.33 

0.0244 
0.0246 

8OCA 160 .961 .049 0 .1430 150 .1260 4.09 4.34 0.0214 
80CA 
85CA 

161 
I6 

.943 

.874 
.050 
.057 

40 
145 

.1430 

.1640 
150 
125 

.1260 

.1370 
2.58 
3.74 

4.33 
4.27 

0.0205­
0.0155 

85CA 167 .921 .05 145 .1640 125 .1370 2.26 4.27 o.oi74 
86CA 168 .781 .049 46 .1620 115 .1400 2.73 4.27 0.0172 
86CA 169 .809 .049 46 .1620 115 .1400 1.27 4.27 0.0204 
88CA 173 .812 .085 39 .1620 150 .1450 4.45 4.32 
88CA 174 .825 .080 39 .1620 150 .1450 2.79 4.32 0.0117 
SCA 175 .858 .074 39 .1620 150 .1450 1.05 4.34 0.0225 
94CA 186 .268 .075 40 .1790 140 .1600 1.94 3.30 0.0345 
980A 194 .277 .077 46 .1710 115 .1250 3.31 3.21 
950A 195 .280 .070 4. .1710 115 .1250 3.31 3.21 
980A 196 .288 .083 46 .1710 115 .1250 1.51 3.23 
99CA 197 .717 .097 92 .1910 22 .1480 2.86 4.30 0.0025 
99CA 198 .638 .101 92 .1910 22 .1480 1.29 4.30 0.0063 

10708 214 .b49 .062 105 .1710 160 .1400 4.53 4.38 
10808 215 .724 .088 92 .1800 36 .1360 3.70 4.43 
108CA 216 .676 .073 92 .1800 36 .1360 1.80 4.4 
11108 220 1.210 .075 76 .1i0 130 .1260 3.23 4.21 
11208 221 1.184 .077 68 .1500 20 .1250 4.00 4.39 
1140B 
11408 

223 
224 

1.271 
1.245 

.097 

.099 
74 
74 

.1430 

.1430 
25 
25 

.1220 

.1220 
3.54 
2.12 

4.43 
4.44 

11508 225 1.226 .073 111 .1410 54 .1150 4.01 4.38 
11508 226 1.216 .070 111 .1410 54 .1150 2.55 4.38 

ICA 501 .516 .028 120 .4830 160 .4470 2.96 4.28 0.1594 
9CA 509 .369 .070 230 .4950 60 .4650 3.94 4.30 o.i435 

lIX 510 .261 .032 230 .4980 45 .4660 3.47 4.26 
IICA -511 .393 .048 230 .4980 45 .4660 3.82 4.26 0.I545 
1608 . 516 .338 .064 175 .4850 130 .4450 2.99 4.31 
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Table IV-I (Continued) 

17CA 517 .688 .077 b2 .4850 55 .4550 2.50 4.52 
190A 
2008 
2108 
2208 

519 
520 
521 
522 

.511 

.708 

.362 

.494 

.079 

.090 

.061 

.052 

77 
115 
70 
57 

.4850 

.4860 

.4750 

.4800 

45 
45 
70 
85 

.4590 

.4360 

.4610 

.4610 

2.30 
1.96 
2.26 
3.61 

4.53 
4.48 
4.53 
4.38 

2308 523 .419 .070 47 .4780 60 .4510 3.66 4.40 
240B 514 .562 .076 50 .4880 40 .4660 2.62 4.45 
24X 
2808 

525 
528 

.483 

.686 
.160 
.078 

50 
47 

.4880 

.4890 
40 
22 

.4660 

.4630 
4.40 
1.88 

4.45 
4.47 

28X 529 .145 .028 47 .4890 22 .4630 4.18 4.45 
28X 
3608 

530 
536 

.112 

.964 
.027 
.117 

47 
44 

.4890 

.5090 
22 
45 

.4630 

.4690 
4.44 
2.46 

4.45 
4.44 

42CA 542 .214 .024 79 .4910 84 .4630 3.03 4.25 O.1If 
43CA 
44CA 
450A 

543 
544 
545 

.116 

.173 

.033 

.009 

.032 

.014 

62 
o0 

39 

.4840 

.4870 

.4860 

70 
52 
50 

.4540 

.4550 

.4540 

2.89 
2.95 
2.96 

4.30 
4.25 
4.30 

0.160 
0.1497 
O.114 

480A 
500A 
59CA 
60CA 

548 
550 
559 
560 

.094 

.900 

.872 

.889 

.005 
.03q 
.069 
.063 

74 
52 
72 
73 

.4780 

.4830 

.4850 
1.4870 

40 
45 

125 
60 

.4370 

.4530 

.4600 
.4560 

3.11 
2.91 
2.28 
3.64 

4.30 
4.29 
4.23 
4.25 

0.1581 
0.1723 
0.1228 
0.1506 

63CA 
640A 
6408 
6408 

5.3 
5.4 
565 
566 

870 
.435 
.391 
.440 

.058 
.071 
.081 
.076 

127 
87 
87 
87 

.4810 

.4780 

.4760 

.4780 

45 
80 
80 
80 

.4560 

.4520 

.4520 

.4520 

2.11 
4.52 
3.08 
1.54 

4.23 
4.37 
4.37 
4.37 

0.120 

660B 
6608 
o70B 

568 
569 
570 

.482 

.430 

.531 

.094 

.096 

.085 

60 
60 
63 

.4920 

.4920 

.480 

55 
55 
80 

.4620 

.4620 

.4660 

3.50 
2.47 
3.87 

4.40 
4.40 
4.43 

6708 571 .568 .081 63 .4800 80 .4660 2.88 4.43 
68C 572 .488 .087 69 .4740 35 .4550 4.36 4.43 
680 
.8 

573 
574 

.454 

.518 
.095 
.090 

o9 
69 

.4740 

.4740 
35 
35 

.4550 

.4550 
3.30 
2.30 

4.43 
4.44 

690B 
60 
6905 
700 

575 
576 
577 
578 

.506 
.601 
.568 
.632 

.077 

.071 

.071 

.089 

82 
82 
82 
53 

.4620 

.4620 

.4c20 

.4750 

78 
78 
78 
90 

.4580 

.4580 

.4580 

.4480 

4.42 
3.43 
2.39 
4.36 

4.43 
4.43 
4.43 
4.40 

7008 
7108 
710B 

579 
580 
581 

.611 
.672 
.699 

.105 

.075 

.078 

53 
63 
63 

.4750 

.4720 

.4720 

90 
36 
36 

.4480 

.4550 

.4550 

3.12 
4.14 
2.92 

4.40 
4.40 
4.40 

7108 
720a 
720 

582 
583 
584 

.690 
.706 
.730 

.072 

.087 

.083 

63 
77 
77 

.4720 

.4910 

.4910 

36 
54 
54 

.4550 

.4650 

.4650 

1.74 
4.68 
3.47 

4.40 
4.40 
4.40 

7208 
730 
7308 

565 
586 
587 

.630 

.672 

.652 

.077 

.091 

.098 

77 
45 
45 

.4910 

.4840 

.4840 

54 
45 
45 

.4650 

.4540 

.4540 

2.25 
4.27 
3.10 

4.38 
4.35 
4.35 

730 588 .688 .087 5 .4840 45 .4540 1.87 4.35 
7708 
7808 
8108 
94C 
94C 
950 
95C 
950 

594 
595 
598 
619 
620 
621 
422 
623 

.688 

.682 

.670 

.483 

.474-

.665 

.675 

.541 

-101 
.127 
.126 
.040 
.035 
.061 
.065 
.041 

52 
60 
29 
45 
45 
58 
58 
58 

.4710 

.4B50 

.4730 

.4830 

.4830 

.4790 

.4790 

.4790 

55 
80 
45 
45 
45 
62 
62 
62 

.4370 

.4600 

.4330 

.4540 

.4540 

.4630 

.4"30 

.4630 

2.42 
3.47 
2.97 
4.14 
2.97 
4.04 
2.83 
1.69 

4.21 
4.05 
4.15 
4.35 
4.35 
4.34 
4.34 
4.34 

0.1631 
0.1441 
0.1155 
0.120 
0.1Z 

97C 
970 
97C 
980 
980 

627 
628 
629 
630 
.31 

.659 
.671 
.562 
.945 
.737 

.063 

.060 

.063 

.083 

.061 

37 
37 
37 
41 
41 

.4950 

.4950 

.4950 

.4920 

.4920 

35 
35 
3 
75 
75 

.4570 

.4570 

.4570 

.4640 

.4640 

4.07 
2.86 
1.72 
3.95 
2.78 

4.35 
4.35 
4.35 
4.40 
4.40 

0.ls6 
0.1518 
0.144 
0.1218 
0.12" 

1000 
100C 
1020 

634 
635 
639 

1.121 
1.020 
1.041 

.065 

.069 

.069 

105 
105 
140 

.4810 

.4810 

.4850 

125 
125 
90 

.4500 

.4500 

.4690 

3.80 
1.84 
5.15 

4.25 
4.25 
4.25 

0.1302 
0.1350 
0.1479 

102C 
1020 
104C 
1040 
1040 
1050 
1050 

640 
641 
644 
645 
64 
647 
648 

1.075 
1.075 
.943 
.995 
.846 
.122 
.177 

.058 

.Obu 

.048 

.062 

.054 

.012 

.027 

140 
140 
55 
55 
55 
51 
51 

.4850 

.4850 

.4920 

.4920 

.4920 

.4800 

.4800 

90 
90 
40 
40 
40 
82 
82 

.4690 

.4690 

.4590 

.4590 

.4590 

.4600 

.400 

3.40 
1.60 
5.27 
3.42 
1.69 
4.41 
2.86 

4.25 
4.25 
4.25 
4.25 
4.25 
4.37 
4.37 

o.i61 
01i1 
0.136 
0.1"2 
0.1370 
0.1682 
0.1510 

1070 
1070 
108C 
1080 
1090 

651 
642 
653 
654 
655 

.259 
.132 
.285 
.183 
.289 

.020 

.033 

.038 

.026 

.035 

165 
lb5 
9U 
90 
44 

.4990 

.4990 

.4970 

.4970 

.4870 

95 
95 
65 
65 
48 

.4700 

.4700 

.4670 

.4670 

.4550 

3.17 
2.14 
2.48 
1.48 
4.78 

4.35 
4.35 
4.35 
4.35 
4.35 

o.id6o
W10, 
0.i426 
0.1475 
0.1664 

1090 
1090 
1120 

656 
657 
661 

.198 

.196 

.621 

.032 

.013 

.061 

44 
44 

115 

.4875 

.4870 

.4273 

48 
48 
48 

.4550 

.4550 

.4550 

3.79 
2.76 
2.93 

4.35 
4.35 
4.40 

0.1642 
0.i640 
0.1388 

112X 
126C 
1280 

662 
675 
677 

.645 
1.050 
1.093 

.064 

.077 

.054 

115 
85 
53 

.4270 

.4880 

.4680 

48 
32 
30 

.4550 

.4670 

.4700 

4.10 
3.63 
3.70 

4.40 
4.35 
4.34 

0.1502 
0.111m4 
0.1368 

1320 
4CA 
4CA 
4CA 
IICA 

661 
301 
302 
303 
3 

.431 

.529 

.535 

.515 

.514 

.037 

.044 

.038 

.09 

.053 

64 
-0 
-0 
-0 
-0 

.4810 

* 

150 
-0 
-0 
-­0 
-0 

.4530 
* 
* 
* 
* 

4.27 
.99 

2.68 
4.39 
1.73 

4.50 
-0. 
-0. 
*o 
-0. 

0.1429 
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Table IV-1 (Concluded) 

lICA 
140B 
5308 

305 
306 
307 

.461 

.294 

.773 

.044 

.051 

.091 
-­

-0 
0 
-0 

* 
* 

-0 
-0 
-0 

* 
* 

3.23 
2.10 
4.16 

-0. 
-0. 
-0. 

100B 
10008 
10008 
10208 
10208 
102DB 
1050B 
109C6 
109C8 

4 
4 
4 

11 
11 
14 
53 

100 
100 
100 

308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 

.619 
320 
321 
322 

323 
32 
325 
326 

.799 

.750 

.732 

.626 

.733 

.706 

.637 

.660 

.712 

.529 

.535 

.515 

.514 

.461 

.294 

.773 
.1799 
.750 
.732 

.099 

.096 

.096 

.097 

.094 

.097 

.088 

.088 

.089 

.044 

.038 

.029 

.05 

.044 

.01 

.091 

.099 

.096 

.096 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-
-0 
-0 
-0 
-0 
-0 
-0 

-0 
-0 
-0 
-0 

. 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 

* 
* 
* 
* 

* 
* 
S 
* 

-0 
-0 
-0 
-o 
-0 
-0 
-0 
-0 
-
-0 
-0 
-0 
-0 
.0 
-0 

-0 
-0 
-0 
-0 

* 
* 
* 
* 
* 

* 

* 
* 

* 
* 
* 
* 

* 
* 
* 
* 

1.47 
2.93 
4.39 
1.03 
2.71 
4.45 
2.61 
1.83 
3.35 
..99 

2.68 
4.39 
1.73 
3.23 
2.10 

4.16 
1.47 
2.93 
4.39 

-0. 
-0. 

-0. 
0. 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 

-0. 
-0. 
-0. 
-0. 

102 
102 
102 
105 
109 
109 

3 7 
328 
329 
330 
331 
332 

.628 

.733 

.706 

.637 

.660 

.712 

.097 
.09 
.097 
.088 
.088 
.089 

-0 
-0 
-0 
-0 
-

0 

* 
* 
* 
* 
* 

-0 
-0 
-0 
-0 
-0 
-0 

* 
* 
* 
* 
* 
* 

1.03 
2.71 
4.45 
2.61 
1.83 
3.35 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 

2CB 
13C8 
55C5 

801 
802 
b03 

.496 

.250 

.907 

.052 

.035 

.068 

-0 
-0 
-0 * 

-0 
-0 
-0 

* 

* 

2.63 
3.68 
2.94 

-0. 
-0. 
-0. 

9005 
9008 

804 
805 

1.292 
1.327 

.117 

.12. 
-0 
-o 

* 
* 

-0 
-

* 
* .1.583.33 -0.-0. 

900B 
9108 
910D 
9108 
9308 
9308 
9308 

IIOCB 
I10CB 
1106 
11708 
124CB 

2 
13 
55 
90 
90 
90 
91 
91. 
91 
93 
9& 
93 

110 
110 
110 

806 
307 
608 
809 
810 
8ll 
812 
813 
614 
6 15 
316 
817 
818 
819 
820 
821 
822 
323' 
324 
825 
326 
827 
828 
329 
830 
831 
632 

1.412 
1.171 
1.487 
1.498 
1.257 
1.783 
1.878 
.293 
.2.2 
.207 

1.365 
1.104 
.496 
.250 
.907 
1.292 
1.327 
1.412 
1.171 
1.487 
1.498 
1.257 
1.783 
1.878 
.293 
.242 
.207 

.120 

.115 

.113 

.127 

.118 

.117 

.122 

.040 

.043 

.034 

.127 

.082 

.052 
.035 
.068 
.117 
.124 
.120 
.115 
.113 
.127 
.118 
.117 
.122 
.040 
.043 
.034 

'0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-&. 
-0 
-0 

* 

* 
* 
* 

* 
* 
* 
. 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

* 
* 

* 
* 
* 
* 

* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

5.15 
1.38 
3.31 
5.04 
1.63 
3.22 
5.10 
2.35 
3.31 
4.32 
3.78 
3.76 
2.63 
3.68 
2.94 
1.58 
3.33 
5.15 
1.38 
3.31 
5.04 
1.68 
3.22 
5.10 
.35 

3.31 
4.32 

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 

0. 
-0. 
-0. 

177 
124 

833 
834 

1.365 
1.304 

.127 

.082 
-Q 
-0 

* 
* 

-0 
-0 

* 3e78 
3.76 

-0. 
-D. 
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Table IV-2 lists nondestructive test observations as ordered
 
according to the actual flaw length. Table IV-3 lists non­

destructive test observations by the-penetrant method as
 

ordered according to actual open flaw length. Sequence 10
 

denotes the inspection cycle which we performed in the "as
 

produced" condition, and after etching. Sequence 15 denotes
 

the inspection cycle which was performed after scarfing one
 

crown off the panels. Sequences 2 and 3 are inspections
 

performed after etching the scarfed panels and after proof
 

loading the panels. Sequences 2 and 3 inspections were perform­

ed with the panels in the same condition as noted for ultrasonic,
 
eddy current and x-ray inspections performed in the same cycle. 

A "0" indicates that there were no misses by and of the three 
NDT observers. Conversely, a "3" indicates that the flaw was 

missed by all of the observers. A "-0" indicates that no NDT
 

observations were made for the sequence.
 

2. Data Ordering
 

Actual flaw data (Table IV-l) were used as a basis for all sub­
sequent calculation, ordering, and analysis. Flaws were initially
 

ordered by decreasing actual flaw length, depth, and area.
 
These data were then stored for use in statistical analysis
 

sequences.
 

3. Data Analysis and Presentation
 

The same statistical analysis, plotting methods, and calculation
 
of one-sided confidence limits described for the integrally
 
stiffened panel data were used in analysis of the LOP detection
 
reliability data.
 

4. Ultrasonic Data Analysis
 

Initial analysis of the ultrasonic testing data revealed a
 

discrepancy in the ultrasonic data. Failure to maintain the
 

detection level between sequences and to detect large flaws
 

was attributed to a combination of panel warpage and human factors
 

in the inspections. To verify this discrepancy and to provide
 

a measure of the true values, 16 additional LOP panels containing
 

33 flaws were selected and subjected to the same Sequence I and
 

Sequence 3 inspection cycles as the completed panels. An additional
 

optimization cycle performed resulted in changes in the NDT
 
procedures for the LOP panels. These changes are shown as
 

Amendments A and B to the Appendix E procedure. The inspection
 

sequence was repeated twice (double inspection in two runs),
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Table IV-2 NDT Observations, LOP Panels
 

ULTRASONIC EDDY CURRENT X-RAY 

INSPECTION 
SEQUENCE 1 2 3 1 2 3 1 2 3 

CRACK ACTUAL. 
NUMBER VALUE 

223 1.271 3 0 0 0 3 3 1 0 0 
224 1,245 0 0 0 1 3 3 1 0 0 
225 1.22b 3 3 U 3 1 2 0 0 0 
286 1,21d 3 3 0 1 1 2 0 0 0 
220 1,210 3 3 u 0 3 2' 2 0 0 
71 19184 2 0 0 3 3 3 0 0 0 

221 19184 3 3 0 0 1 0 0 0 0 
55 1.175 3 3 0 1 0 0 0 0 0 
50 1.158 3 3 0 1 3 3 0 0 0 
129 1.15$ 3 0 -0 3 3 -0 0 0 3 
61 1156 3 0 0 3 3 0 0 0 0 
70 1.150 2 3 0 3 3 0 0 0 0 
69 1.125 1 3 0 3 3 3 0 0 1 
127 
62 

1,124 
1,122 

3 
3 

3 
3 

0 
0 

0 
3 

2 
3 

0 
1 

0 
0 

0 
0 

0 
0 

634 1,121 0 0 0 3 3 3 0 0 0 
130 1,105 1 0 -0 1 3 -0 0 0 3 
49 1,100 3 3 0 2 3 3 0 0 0 

677 1.093 1. 0 0 3 3 3 0 0 0 
56 19079 3 3 0 0 0 0 0 0 0 

125 1075 3 1 0 0 3 3 2 0 0 
640 1.075 3 1 0 1 2 2 3 2 0 
641 1,076 2, 1 1 1 1 3 1 1 0 
51 I.075- 3 3 3 2 2 3 0 0 0 
57 1,052 3 2 0 3 2 0 0 0 0 

675 1,050 2 3 0 2 1 2 2 2 0 
639 1,041 3 3 0 3 3 1 3 3 1 
635 1.020 3 2 0 3 2 3 2 2 0 
156 1.014 3 0 0 3 3 3 0 0 0 
77 10010 0 0 0 1 0 0 0 0 0 

645 '993 2 1 0 3 3 3 3 3 0 
78 .987 0 u 0 0 0 1 0 0 0 

157 .986 3 1 0 2 3 3 1 0 0 
536 .964 3 3 0 0 3 0 3 2 0 
160 .961 3- 0 0 3 3 3 0 0 0 
630 .945 3 3 0 2 2 2 2 1 0 
644 .943 2 0 0 3 3 3 3 2 0 
161 .943 3 0 0 2 3 2 0 0 0 
85 .935 0 O -0 0 0 -0 0 0 3 
104 '929 3 2 0 3 3 3 0 0 0 
167 .921 3 3 0 3 3 0 0 0 0 
79 '919 0 0 0 1 0 1 0 0 0 
80 ,916 1 0 0 0 3 1 0 0 0 

550 '900 3 3 0 1 3 0 3 3 1 
81 .890 O 0 0 0 0 1 0 0 0 

560 .889 1 1 0 3 3 1 1 0 0 
103 '885 3 3 0 3 3 0 0 0 
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Table IV-2 (Continued)
 

NU VAL 1 2 3 I 2 3 1" 2" 3 

166 o37 ­ 3 U U 1 3 0 0 0 0 
559 S872 3 3 0 3 3 3 2 2 0 
563 .870 1 U 0 2 3 3 1 1 0 
175 .858 .3 3 -0 3 3 -0 0 0 3 
82 .850 1 U U 2 0 0 0 0 0 

646 ,846 3 0 0 2 2 2 3 3 0 
174 .825 3 3 -0 3 3 -o 0 0 3 
b3 .825 0 0 -0 1 3 -0 0 0 3 
173 .812 3 3 -0 3 0 0 0 0 3 
169 .80.) 3 2 0 3 2 3 0 0 0 
84 .790 U 0 -U 0 3 -0 0 0 3 

122 o788 3 3 0 1 3 3 U 0 0 
It8 e781 2 j 0 2 0 1 0 0 0 
124 9749 3 0 0 2 3 0 0 0 0 
123 0742 3 3 0 2 3 0 0 0 0 
631 a737 3 3 0 3 2 1 3 1 0 
121 .734 3 0 0 1 0 3 0 0 U 
584 .730 3 2 0 2 3 0 0 1 0 
215 .724 3 3 0 2 3- 3 1 1 0 
197 .717 1 3 0 1 3 3 0 0 0 
520 .708 3 2 0 1 3 0 0 2 0 
583 .706- 3 1 0 0 3 0 0 1 2 
581 ,699 3 3 0 3 2 0 0 0 0 
119 o698 3 3 0 1 3 3 0 0 0 
582 .690 3 0 0 2 2 0 0 1 0 
517 s688 1 3 '0 1 3 3 3 0 0 
588 688 1 0 0 3 3 3 1 1 0 
594 688 3 3 0 3 3 0 1 2 0 
528 o686 3 3 0 0 3 0 3 2 0 
595 .682 3 1 0 0 3 3 1 1 0 
216 .67o 3 3 0 2 3 3 1 0 0 
622 .675 0 0 0 3 3 1 2 1- 0 
580 .672 3 3 0 2 2 0 1 1 0 
586 .672 3 1 0 2 3 3 1 2 0 
628 .671 3 1 0 3 1 3 3 1 0 
598 .670 3 3 U 2 3 3 1 1 0 
621 *665 U 0 0 2 3 3 0 1 0 
627 o659 3 1 0 3 2 2 1 1 0 
587 .652 2 0 0 2 2 3 0 0 0 
214 .649 3 3 0 3 3 0 0 0 0 
662 .645 3 3 3 3 3 3 3 3 3 
198 .63? 0 1 U 2 3 3 0 0 0 
578 9632 0 0 0 2 1 3 0 0 0 
585 o630 J 0 0 2 0 0' 0 1 0 
661 .621 3 3 3 3 3 3 3 3 3 
579 .611 0 0 0 1 3 3 0 1 0 
576 9601 1 0 0 1 0 0 0 0 0 
20 ,569 3 3 0 3 3 3 0 0 0 

571 .566 "3 3 0 2 3 0 1' 1 0 
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Table IV-2 (Continued)
 

CKj ACT 
NO VAL 1 2 3 1 2 3 1 2 3 

577 *568 0 0 0 1 0 0 1 0 0 
524 .562 2 3 0 2 0 1 0 0 0 
629 .562 3 1 0 3 2 3 3 1 0 
17 .542 3 3 0 2 3 1 0 0 0 

623 .541 0 0 0 3 0 3 3 2 0 
570 .531 3 3 0 1 3 0 0 1 0 
574 .518 2 3 0 3 2 2 0 1 0 

1 .517 3 3 0 3 3 3 0 0 0 
501 .516 3 3 0 3 0 3 3 2 0 
519 .511 3 3 0 1 0 2 3 0 0 
575 .506 0 0 0 1 0 0 0 0 0 

2 .50* 3 3 0 3 3 3 0 0 0 
19 . 498 3 3 0 2 3 3 0 0 0 

522 .494 2 3 0 0 3 0 1 2 0 

572 .488 0 0 0- 0 2 3 0 1 0 
525 .483 a 2 0 0 3 3 0 0 0 
619 .483 3 3 1 3 3 0 3 3 2 
568 .48e 3 3 U 1 3 0 0 1 0 
620 .474 3 0 0 1 1 0 3 3 0 
5-3 .454- 1 0 0- 3 2 3 1 1 0 
566 .440 U 0 0 2 3 2 0 0 1 
564 .435 3 2 0 2 3 3 0 0 0 
681 *431 3 3 0 2 1 3 3 2 0 
569 *430 0 3 3 2 0 2 0 0 0 
523 .419 0 0 0 0 3 0 0 0 0 
511 .393 3 2 0 3 3 3 3 3 0 
565 a391 1 0 0 2 2 3 0 0 0 

142 ,372 3 3 0 0 3 3 0 0 0 
509 .369 3 3 0 3 3 2 3 3 0 
521 ,362 3 3 0 0 3 0 1 2 0 
35 .346 0 0 0 3 3 3 0 0 0 
39 .345 0 0 0 1 0 0 0 0 0 

150 .343 3 3 3 2 3 3 0 0 0 
38 .341 1 0 0 2 0 3 0 0 0 

516 .338 0 0 0 2 3 3 0 1 0 
44 .337 0 0 0 1 3 3 0 0 0 
46 .336 3 2 0 2 3 2 0 0 .0 
148 .324 3 3 0 1 3 3 0 0 0 
143 .320 3 3 0 0 3 3 1 0 0 
36 .318 0 0 0 2 2 1 0 0 0 
45 .309 0 1 0 2 3 1 0 0 0 
146 .297 3 3 2 1 3 1 0 0 0 
655 .289 3 3 0 2 3 3 3 0 0 
147 .288 3 3 0 2 3 3 0 0 0 
196 .288 3 3 3 2 3 2 0 0 0 
653 .285 3 0 -0 3 3 3 3 3 1 
195 .280 0 3 0 3 3 1 0 0 0 
194, ,277 3 3 0 3 3 0 0 0 0 
30 ,26d -3 1 0 1 2 0 0 0 0 
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Table IV-2 (Concluded)
 

CK 
NO 

ACT 
VAL 1 2 3 1 2 .3 1 2 3 

186 .26 3 3 '0 1 3 3 0 0 0 
149 p261 3 3 0 3 3 3 0 0 0 
37 p263 1 0 0 2 1 1 0 0 0 

151 .262 3 3 u 1 3 3 0 0 0 
510 o261 0 0 0 3 3 3 2 3 3 
6!)1 
40 

259 
.258 

3 
0 

3 
0 

0 
0 

2 
1 

1 
3 

3 
0 

3 
0 

2 
0 

0 
0 

152 .250 3 3 0 3 3 3 0 0 0 
153 .243 3 .3 0 1 3 2 0 0 0 
d9 .231 3 3 0 2 3 0 0 0 0 

542 o214 2 3 0 2 0 3 3 2 0 
656 .191 3 J 0 3 2 3 0 1 0 
657 '196 3 3 0 3 1 3 3 2 1 
24 .194 3 3 0 2 0 3 0 0 0 

654 .183 3 3 0 2 3 3 3 3 0 
648 .177 3 0 0 1 3 0 2 2 0 
544 .173 3 3 0 0 3 0 2 0 1 
529 ,14h 2 3 0 2 3 3 3 2 2 
28 .133 3 3 u 2 3 3 3 1 0 

642 .132 -0 -0 0- -0 -0 -0 - -0 -0 

647 o122 1 3 2 3 3 2 P 2 3 
543 9116 2 3 0 3 3 1 3 1 1 
530 .i1 0 0 0 2 3 0 1 2 0 
548 *094 1 3 3 1 3 3 2 3 2 
545 ,033 3 3 1 2 2 3 3 1 3 
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TabZe IV-3 NDT Observations by the Penetrant Method, LOP Panels-


PENETRANT 

INSPECTION 
SEQUENCE 10 15 2 

CRACK ACTUAL 
NUMBER VALUE 

223 1,271 1 3 4 0 
224 1o245 1 3 j 0 
225 1.226 1 3 2 0 
226 1o218 1 2 3 0 
220 1.21V "0 3 3 0 
221 1.184 1 3 3 0 
S5 1,17b 3 3 3 0 
50 1,158 3 3 3 3 
129 1o15 2 3 3 -0 
127 1,124 2 3 3 0 
130 1,105 0 3 3 -U 
49 1,100 3 3 3 3 
56 1,079 3 3 3 0 

125 1.075 1 3 21 0 
51 1,075 3 3 3 2 
57 1.052 3 3 j 0 
77 1.010 3 1 0 3 
78 .987 0 1 0 1 
85 .935 0 3 3 3 
79 '919 0 2 0 1 
80 .916 3 3 2 0 
81 *89U 0 0 v 0 
82 .850 0 0 0 0 
83 .825 0 3 3 -0 

173 .812 3 3 2 -0 
84 *79U 0 3 3 3 

122 *788 0 3 3 0 
124 a749 1 3 2 0 
123 .742 3 3 e 0 
121 .734 0 3 3 1 
584 .730 0 0 0 0 
215 .724 2 3 j 2 
520 .708 2 3 3 0 
583 ,70c 0 3 2 0 
581 .699 0 3 3 0 
119 .698 2 3 3 0 
582 o690 0 2 3 0 
517 0688 0 3 3 0 
588 ,688 0 3 3 0 
594 .688 0 3 3 0 
595 (8D 3 3- 0 
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Table IV-3 (Coneluded)
 

CK ACT 
NO VAL 0 15 2 -

216 676 0 3 3 1 
586 .672 0 3 3 0 
580 o672 0 3 3 2 
598 .670 e 3 3 0 
587 e652 0 3 3 0 
214 *649 0 3 3 0 
578 a632 0 3 3 0 
585 .630 0 3 3 0 
579 ,611 0 3 e 0 
576 .601 0 u U 0 
571 ,568 0 2 1 0 
577 ,568 0 0 0 0 
524 .562 3 2 1 0 
570 .531 0 2 2 2 
574 9518 0 3 J 0 
519 .511 1 3 3 0 
575 *50b 0 0 0 0 
522 .494 3 3 2 1 
572 .488 0 3 3 1 
525 .483 3 3 3 1 
568 .482 3 3 3 0 
573 .454 2 3 3 0 
566 .440 0 3 3 0 
564 .435 2 3 3 0 
569 .430 1 3 3 0 
523 .419 2 3 3, 0 
565 ,391 0 2 3 0 
521 .362 1 3 1 0 
39 ,345 3 0 0 0 
38 .341 0 0 0 0 

516 .338 U 3 J 0 
196 .288 3 3 3 3 
195 ,280 3 3 3 2 
194 .277 3 3 3 0 
30 .268 3 3 3 2 
37 .263 3 0 £ 0 
40 -o258 3 3 3 0 
29 .231 2 3 2 0 
24 .194 3 3 1 1 

8 .133 1 3 1 0 
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with three different operators making their own C-scan recordings,
 

interpreting the results, and documenting the inspections. The
 

operator responsible for the original optimization and recording
 

sequences was eliminated from this repeat evaluation. Additional
 

care was taken to align warped panels to provide the best
 

possible evaluation.
 

The results of this repeat cycle showed a definite improvement
 

in 	the reliability of the ultrasonic method in detecting LOP
 

flaws. The two data files were merged on the following basis:
 

o 	 Data from the repeat evaluation were ordered by actual flaw 

dimension; 

" 	An analysis was performed by counting down from the largest
 

flaw to the first "miss" by the ultrasonic method;
 

* 	The original data were truncated to eliminate all flaws
 

larger than that of the first "miss" in the repeat data;
 

" 	The remaining data were merged and analyzed according to the
 

original plan. The merged actual data file used for processing
 

Sequences 1 and 3 ultrasonic data is shown in Table IV-i.
 

Table IV-A lists nondestructive test observations by the ultra­

sonic method for the merged data as ordered by actual crack length;
 

* 	The combined data base was analyzed and plotted in the same
 

manner as that described for the integrally stiffened panels.
 

F. DATA RESULTS
 

The results of inspection and data analysis are shown graphically
 

in Figures IV-7, IV-8, IV-9, and IV-I0. Figure IV-7 plots
 

NDT observations by the penetrant method for flaws open to the
 

surface. Figure IV-8 plots NDT observations by the ultrasonic
 
the merged data from the original
inspection method and includes 


and repeat evaluations for Sequences 1 and 3. Sequence 2 is for
 

original data only. Figures TV-9 and IV-10 are plots of NDT
 

observations by the eddy current and x-ray methods for the
 

original data only.
 

The results of these analyses show the influences of both flaw
 

geometry and tightness and of the weld bead geometry variations
 

as inspection variables. The benefits of etching and proof
 

loading for improving NDT reliability are not as great as
 

those observed for flat specimens. This is due to the
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greater inspection process variability imposed by the panel
 
geometries.
 

Eddy current data for the thin (1/8-in.) panels .are believed to
 
accurately reflect the expected detection reliabilities.
 
The data are shown at the lower end of the plots in Figure IV-9.
 
Eddy current data for the thick (1/2-in.) panels are not
 
accurately represented by this plot due to the limited depth
 
of penetration, approximately 0.084 inch at 200 kilohertz.
 
No screening of the data at the upper end was performed due to
 
uncertainties in describing the flaw length interrogated at the
 
actual penetration depth.
 



Table IV-4 NDT Observations by the Ultrasonic Method, Merged
 
Data, LOP Panels 

ULTRASONIC 

INS PE CkON 
SEQUENCE 1 2 3 

CRACK ACTUAL 
NUMBER VALUE 

812 1,878 0 -0 0 
829 1.878 0 -0 0 

8e8 1.783 0 -0 o 
811 1.783 0 -U 0 

8U9 1,498 0 -0 0 
826 1.496 0 -0 0 
825 1.487 0 -0 0 
808 1.487 0 -0 0 
806 1.412 U -0 0 
-823 -,.41e 0 -u 
616 1.365 0 -U U 
833 1,365 0 -U 0 
805 1.327 0 -0 0 
822 1,321 0 -0 0 
821 1,292 0 -0 0 
804 1O292 U -0 U­
223 1.271 3 0 0 
827 1,251 0 -0 0 
810 1,251 0 -0 0 
224 1,245 0 0 0 

225 
226 

1,226 
1.218 

3 
3 

3 
3 

0 
0 

220 1,210 3 3 0 

71 1,184 2 0 0 
221 1,184 3 3 0 
55 1,17S 3 3 0 

807 1.171 0 -0 0 
824 1.171 0 -0 0 
50 1.15S 3 3 U 
129 1.158 3 0 -U 
61 l1lbb 3 0 U 
70 
69 

1,150 
1.125 

2 
1 

3 
3 

U 
0 

127 1.124 3 3 0 
62 1.122 3 3 0 

634 1.121 0 0 U 
130 lo.On 1 0 -0 
817 
834 

1,104 
1.104 

(1 -U 
0 -u 

0 
o 

49 1.100 3 3 0 

677 1,093 1 0 0 
56 1.079 3 3 0 

641 1.075 2 1 1 
51 1,075 3 3 3 
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Table IV-,'- (Continued) 

CK ACT 
NO VAL 1 2 3 

125 1,075 3 
640 1,075 3 1 0 
57 1,052 3 0 

675 1.050 d 3 0 
639 1,041 3 3 0 
635 1,020 3 -2 0 
156 1.014 3 0 U 
77 1.010 0 0 0 

6,5 .993 2 1 0 
78 '987 0 0 0 

1b7 .986 3 1 0 

536 .964 3 3 0 
Io 0 961 3 0 0 
630 .945 3 3 0 
644 *943 0 0 

161 .943 3 0 0 
85 .935 0 0 -0 
104 .929 3 2 0 
167 .921 3 3 0 
79 .919 0 0 0 
80 ,91b 1 0 0 

820 .907 0 -0 0 
803 .907 0 -0 0 
550 .900 3 3 0 
81 .890 0 0 0 

560 0889 1 1 0 
103 .885 3 3 0 
166 .874 3 U 0 
559 v872 3 3 0 
563 .870 1 0 0 
175 o858 3 3 -0 
82 .850 1 0 0 

646 ,846 3 0 0 
174 .825 3 3 -0 

$3 .825 0 0 -0 
173 .812 3 3 -0 
169 .809 3 2 0 
308 .799 0 -0 0 
324 .799 U -0 0 

84 .790 u 0 -0 
122 .788 3 3 0 
168 .781 2 3 0 
323 e773 0 -0 0 
307 .773 0 -0 0 
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Table IV-.' (Continued)
 

CK Acr 

NO VAL 1 2 3 

309 .750 0 -0 U 
3e5 ,750 0 -U 0 
124 .749 3 0 0 
123 .742 3 3 0 
641 .73( 3 3 0 

121 .734 3 0 0 
312 ,73j U -U 0 

328 .733 0 -0 U 
326 .732 U -0 0 
310 .732 0 -U 0 
564 
215 

.730 

.72*+ 
3 
3 

2 
3 

U 
0 

'197 .717 1 3 0 

316 .712 0 -0 0 
332 .712 0 -U 0" 
520 .705 3 2 0 
313 *70b U -0 0 
329 .706 0 -U 0 
583 a706 3 1 U 
581 .699 .3" 0" 
119 .698 3 3 0 
582 ,690 3 0 0 

594 .686 3 3 0 
517 .688 1 3 0 
588 *6886 11 0 
528 .686 3 3 0 

595 .68e 3 1 0 
216 .676 3 3 0 
622 .675 0 U 0 
580 .672 3 3 0 
586 ,67 .3 1 0 

628 .671 3 1 0 
598 e670 3 3 0 
621 o665 0 0 0 
331 .660 0 -0 0 
315 .660 0 -0 0 
627 .659 3 1 U 
587 
214 
662 

.652 

.649 
,64b 

e 
3 
3 

0 
3 
3 

0 
0 
3 

198 .638 0 1 U 
314 .631 0 -0 0 
330 .637 U -u 0 
518 .632 0 0 U 
565 a630 3 0 0 
327 .628 0 -0 0 
311 .628 0 -0 0 
661 .621 3 3 3 
579 :611 0 0 0 
5t6 .601 1 0 0 

20 .569 3 3 0 
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Table IV- (Continued)
 

CK ACT 
NO VAL 1 2 3 

571 .568 3 1 0 
57? 
524 

568 
.562 

0 
2 

0 
3 

0 
0 

629 0562 3 1 0 
17 o542 3 3 0 

623 *541 0 0 0 
302 .535 0 -u 0 
318 c535 0 -U 0 
570 o531 3 3 0 
317 *529 0 -0 0 
301 o529 0 c0 ( 

5/4 .518 2 1 0 
1 o517 3 3 0 

501 51b 3 3 0 
303 .515 0 -0 0 
349 o515 u -0 0 
304 .514 0 -0 0 
320 .514 0 -0 0 
519 o511 3 3 0 
575 .506 0 0 0 

2 s504 3 3 0 
19 .498 3 3 0 

801 .498 3 -0 0 
818 .498 3 -0 0 
522 0494 2 3 0 
572 a488 0 0 0 

525 .483 2 2 0 
619 .483 3 3 1 
568 .482 3 3 0 
620 .474 3 0 0 
305 .461 0 =0 0 
321 o461 U -0 0 
573 .454 1 0 0 
566 :440 0 0 0 
564 .435 3 e 0 
681 .431 3 3 0 
569 .430 0 3 3 
523 .419 0 0 0 
511 .393 3 2 0 
565 .391 1 0 0 
142 o372 3 3 0 
509 o369 3 3 0 
521 .362 3 3 0 
35 .346 0 0 0 
39 .345 0 0 0 

150 ,343 3 3 3 
38 .341 1 0 0 

516 o338 0 0 0 
44 .337 U 0 0 
46 .336 3 2 0 
148 .322 3 3 0 
143 .320 3 3 0 

IV-29 



Table IV-4 (Concluded) 

CK 

NO 


36 

45 


1,6 

306 

322 


813 

830 

655 

147 

196 

653 

195 

194, 

30-


186 

149 

37 

151 

510 

651 

40 


8U2 

819 

152 

153 

814 

831 

29 


542 


815 

832 

656 

657 

24 


654 

648 

544 

529 

28 


b42 

647 

543 

530 

548 

"545 


AcT
 
VAL 


,31d 

.309 

.29? 

*29, 

.294 


.293 


.293 


.289 


.288 


.288 


.285 

.28U 
.271 

.-268 

*26t 

.26t 


.263 


.262 


.261 


.259 


.258 


.250 


.250 

0250 

.243 

.242 

.242 

9231 

.214 


.201 


.201 

.196 


.19b 


.194 


.183 


.177 

6173 

.145 

.133 

.132 

.122 

.116 

0112 

094 

.033 


1 


U 
U 
J 

0 


. o 
0 

0 

3 
-3 

3 

3 

0 

3 

3 

3 

3-


1 

3 

u 

J 
U 

0 

U 
3 

3 

U 
u 

3 

2 


0 

0 

3 

3 

13 


3 

3 

3 

e 
3 


-0 

1 

2 

U 

1 

3 


2 3
 

U " 
1 0 
3 2 

-0 0 
-O 0 

-0 0 
-U 0 

3 0 
J 0 
.3 3 
0 0 
-3 0 
.3 o 
1 0 
3 u
 
3 0 
0 0
 
3 0
 
0 u
 
3 0 

U U 
-u u 
-0 0 

3 u 
3 0 

-U 0 
-0 0 

3 0 
3 0
 

-0 0
 
- .0 
3 0 
3 0 
3 0 
3 0
 
0 0
 
3 0 
3 0 
3 0 
-u -U 
3 2
 
3 0
 
0 0
 
3 3
 
3 1
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V FATIGUE-CRACKED WELD PANEL EVALUATION 

Welding is a common method for joining parts in pressure vessels 

and other critical structural hardware. Weld cracking in 

structures during production, test, or service is a concern in 

design and service reliability analyses. Such cracking may be 

due to a variety of conditions and prevention of cracking is 

a primary responsibility and goal of the welding engineer. 

When such cracks occur, their detection early in the hardware 

life cycle is desirable and detection is the responsibility 

and goal of the nondestructive test engineer. 

One difficulty in systematic study of weld crack detection has 

been in the controlled fabrication of samples. When known 

crack-producing parameters are vaired, the result is usually a 

gross cracking condition that does not represent the normal 

production variance. Controlled fatigue cracks may be grown 

in welds and may be used to simulate weld crack conditions for 

service-generated cracks. Fatigue cracks will approximate weld 

process-generated cracks without the high heat and compressive 

stress conditions that change the character of some weld flaws. 
Fatigue cracks in welds were selected for evaluation of NDT 
methods. 

A program plan for preparation, evaluation, and analysis of 

fatigue cracked weld panels was established and is shown 

schematically in Figure V-1. 

A. SPECIMEN PREPARATION 

Weld panel blanks were produced in two different configurations 

in 0.317-centimeter (0.125-in.) and 1.27-centimeter (0.500 in.) 

nominal thicknesses. The panel material was 2219-T87 aluminum 

alloy with a fusion pass and a single 2319 aluminum alloy filler 

pass weld located in the center of each panel. Five panels 

of each thickness were chemically milled to produce a land area 

one inch from each side of the weld and to reduce the thickness 

of the milled area to one-half that in the land area. The 

specimen configuration is shown in Figure V-2. 

Starter notches were introduced by electrodischarge machining 

(EDM) using shaped electrodes to control the final flaw shape. 

Cracks were then extended in fatigue and the surface crack 

length visually monitored and controlled to the required final 

flaw size and configuration requirements as shown schematically 

in Figure V-3. The flaws were oriented parallel to the weld bead 
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Figure V-1 NDT Evaluation Sequence for Fatigue-CrackedWelded Panels 
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Figure V-3 
Schematic Side View of the Starter Flaw and FinaZ Flaw Configura­
tion for Fatigue-Cracked Weld Panels 
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in transverse weld panels and perpendicular to the weld bead in
 

longitudinal weld panels. Flaws were randomly distributed in
 

the weld bead centerline and in the heat-affected zone (HAZ) of
 

both transverse and longitudinal weld panels.
 

Initial attempts to grow flaws without shaving (scarfing) the
 

weld bead flush were unsuccessful. In the unscarfed welds, flaws
 

would not grow in the cast weld bead material and several panels
 
- were failed in fatigue before it was decided to shave the welds. 
In the shaved weld panels, four of the six flaw configurations 
were produced in 3-point band fatigue loading using a maximum 

bending stress of 1.4 x 10 N/m2 (20 ksi). Two of the flaw 
configurations were produced by axially loading the panels to 
obtain the desired flaw growth. The flaw growth parameters 
and flaw distribution in the panels are shown in Table V-1. 

Following growth of the flaws, panels were machined using a
 

shell cutter to remove the starter flaws. The flush weld panel
 
configurations were produced by uniformly machining the surface
 
of the panel to the "as machined" flush configuration. This
 

group of panels was designated as "fatigue-crack flawed, flush
 
welds-" Panels with the weld crown intact were produced by
 

masking the flawed weld area and chemically milling the panel
 

areas adjacent to the welds to remove approximately 0.076
 
centimeters (0.030 in.) of material. The maskant was then
 
removed and the weld area hand-ground to produce a simulated
 
weld bead configuration. This group of panels was designated
 
the "fatigue-crack flawed welds with crowns." 117 fatigue
 
cracked weld panels were produced containing 293 fatigue cracks.
 

Panels were cleaned and submitted for inspection.
 

B. NDT OPTIMIZATION
 

Following preparation of the fatigue-crack flawed weld specimens,
 

an NDT optimization and calibration program was initiated.
 
Panels containing the smallest flaw size in each thickness
 

group and configuration were selected for evaluation and comparison
 
of NDT techniques.
 

1. X-radiography
 

X-radiographic exposure techniques established for the LOP
 

panels were verified for sensitivity on the fatigue crack flawed
 
weld panels. The techniques revealed some of the cracks and
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<Table V-i Parameters for Fatigue-Crack Growth in Welded Panels 

CASE 
# 

STARTER 
DEPTH 

DIM. 
WIDTH 

FINAL FLAW 
WIDTH 

TYPE OF 
LOADING 

STRESS 
KSI 

STRESS 
CYCLES 'AVG.) 

PANELS FLAWS 

4 .025 .114 .250 Axial 24 190,000 Transverse 
45,000 Longitudinal 

5 .025 .417 .500 3-Point 24 i00,000 Transverse *60 
13,000 Longitudinal 1/2 inch 

Panels 
157 

6 .025 .920 1.000 3-Point 22 100,000 Transverse 
11,000 Longitudinal 

7 .015 .025 .060 Axial 24 169,000 Transverse 
75,000 Longitudinal 

8 

9 

.015 

.015 

.055 

.268 

.125 

.300 

3-Point 

3-Point 

22 

25.6 

180,000 Transverse 
13,000 Longitudinal b57 

1/8 inch 
60,000 Transverse Panels 
7,000 Longitudinal 

136 



failed to reveal others. Failure of the techniques were attribut­

ed to the flaw tightness and further evaluation was not pursued.
 
The same procedures used for evaluation of the LOP panels were
 

selected for all weld panel evaluation. Details of this prodedure
 

are included in Appendix D.
 

2. Penetrant Evaluation
 

The penetrant inspection procedure used for evaluation of
 

integrally stiffened panels and LOP panels was applied to the
 

Fatigue-cracked weld panels. This procedure is shown in Appendix
 
A. 

3. Ultrasonic Evaluation
 

Single- and double-transducer evaluation techniques at 5, 10,
 
and 15 megahertz were evaluated as a function of incident angle,
 
flaw signal response, and the signal-to-noise ratio generated
 

on the C-scan recording outputs. Each flaw orientation, panel
 

configuration, and thickness required a different technique for
 

evaluation. The procedures selected and used for evaluation of
 

weld panels with crowns is shown in Appendix H. The procedure
 
selected and used for evaluation of flush weld panels is shown
 

in Appendix I.
 

4. Eddy Current Evaluation
 

Each flaw orientation, panel configuration, and thickness also
 

required a different technique for eddy current evaluation.
 
The procedures selected and used for evaluation of weld panels
 
with crowns is shown in Appendix J. The spring-loaded probe
 

holder used for scanning these panels is shown in Figure IV-4.
 

The procedure selected and used for evaluation of flush weld
 
panels is shown in Appendix K. The spring-loaded probe holder
 
used for scanning these panels is shown in Figure. IV-5.
 

C. TEST SPECIMEN EVALUATION
 

Test specimens were evaluated by optimized penetrant, ultrasonic,
 

eddy current, and x-radiographic inspection procedures in three
 

separate inspection sequences. After familiarization with the
 
specific procedures to be used, the 117 specimens were evaluated
 

by three different operators for each inspection sequence.
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Inspection records were analyzed and recorded by each operator
 

without a knowledge of the total number of cracks present or
 
of the previous inspection results.
 

1. Sequence 1 - Inspection of "As-Machined" Weld Specimens
 

The Sequence 1 inspection included penetrant, ultrasonic, eddy
 

current, and x-radiographic inspection procedures.
 

Penetrant inspection of specimens in the "as-machined" condition
 

was performed independently by three different operators who
 

completed the entire penetrant inspection process and reported
 
their own results. One set of C-scan ultrasonic and eddy current
 

recordings were made. Tire recordings were then evaluated and
 

the results recorded independently by three different operators.
 

One set of x-radiographs was made. The radiographs were then
 

evaluated independently by three different operators. Each
 

operator interpreted the x-radiographic image and reported his
 

own results.
 

Inspections were carried out using the optimized methods establ­

ished and documented in Appendices A, D, H, T, J, and K. 

2. Sequence 2 - Inspection after Etching
 

On completion of the first inspection sequence, the surface of
 

all panels was-given a light metallurgical ("Flicks" etchant)
 

solution to remove the residual flowed material from the flaw
 

area produced by the machining operations. Panels were then
 

reinspected by the optimized NDT procedures.
 

Penetrant inspection was performed independently by three
 

different operators who completed the entire penetrant inspection
 

process and reported their own results.
 

One set of C-scan ultrasonic and eddy current recordings were
 

made. The recording were then evaluated and the results recorded
 

independently by three different operators. One set of x-radio­

graphs was made. The radiographs were then evaluated by three
 

different operators. Each operator interpreted the x-radiographic
 

image and reported his own results.
 

Inspections were carried out using the optimized methods
 

established and documented in Appendices A, D, H, I, J, and K.
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3. Sequence 3 - Postproof-Load Inspection
 

Following completion of Sequence3, the weld panels were proof­
loaded to approximately 90% of the yield strength for the weld.
 
This loading cycle was performed to simulate a proof-load cycle
 
on functional hardware and to evaluate its benefit to flaw
 
detection by NDT methods. Panels were cleaned and inspected by
 
the optimized NDT methods.
 

Penetrant inspection was performed independently by three
 
different operators who completed the entire penetrant inspection
 
procedure and reported his own results. One set of C-scan
 
ultrasonic and eddy current recording were made. The recordings
 
were then evaluated independently by three different operators.
 
One set of x-radiographs was made. This set was evaluated
 
independently by three different operators. Each operator
 
interpreted the information on the x-ray film and reported his
 
own results.
 

Inspections and readout werd carried out using the optimized
 
methods established'and documented in Appendices A, D, H, I, J,
 
and K. The locations and relative magnitude of the NDT indications
 
were recorded by each operator and were coded for data processing.
 

D. PANEL FRACTURE
 

Following the final inspection in the postproof-loaded configurations,
 
the panels were fractured and the actual flaw sizes measured.
 
Flaw sizes and locations were measured with the aid of a
 
traveling microscope and the results were recorded in the
 
actual data file.
 

E. DATA ANALYSIS
 

1. Data Tabulation and Ordering
 

Actual fatigue crack flaw data for the weld panels were coded,
 
keypunched, and input to a computer for data tabulation, data
 
ordering, and data analysis operations. Data were segregated by
 
panel type and flaw orientation. Table V-2 lists actual flaw
 
data for panels containing fatigue cracks in longitudinal welds
 
with crowns. Table V-3 lists actual flaw data for panels
 
containing fatigue cracks in transverse welds with crowns.
 

V-9 



Table V-2 Actual Crack Data, Fatigue-Cracked Longitudinal Welded Panels with Crowns
 

PANEL CRACK CRACK CRACK INITIAL FINAL CRACK POSITION 
NO. NO, LENGTH DEPTH FINISH THICKNESS FINISH THICKNESS X Y 

15 28 .305 .051 33 .1240 50 .1000 4.23 .05 
16 29, .308 .040 32 .1220 42 "0980 1.94 .05 
16 
16 
17 

30 
31 
32 

.239 
Z269 
.070 

.022 

.029 

.035 

32 
32 
39 

.1220 

.1220 

.1240 

42 
42 
56 

.0980 

.0980 

.11000 

3,25 
4.58 
2.70 

.05 

.05 

.01 
17 
18 

33 
34 

.110 

.094 
.040 
.019 

39 
36 

.1240 

.1220 
56 
58 

.1000 

.0980 
4,04 
2.30 

.01 

.01 
18 
19P 
19P 
20 
20 

35 
3b 
37 
38 
39 

.100 

.050 

.050 

.099 

.107 

.019 

.010 

.010 

.026 

.032 
-

36 
49 
49 
37 
37 

.1220 

.1220 

.1220 

.1220 

.12a0 

58 
64 
64 
54 
54 

.0980 

.0970 

.0970 

.0980 

.0980 

-
4.04 
1,80 
3,48 
1,73 
3.04 

.01 

.01 

.01 

.05 

.05 
20 40 .095 .025 37 .1220 54 .0980 4.32 .05 
21P 
21 
22 
22 
22 
23 
23 
24 

41 
42 
43 
44 
45 
46 
47 
48 

.051 

.021 

.324 

.257 

.291 

.047 

.120 

.095 

.010 

.007 

.034 

.038 

.045 

.007 

.020 

.018 

32 
32 
32 
32 
32 
50 
50 
50 

.1230 

.1230 

.1240 

.1240 
-. 1240 
.1230 
.1230 
.1230 

40 
40 
60 
60 
60-
46 
46 
38 

.0980 

.0980 

.0990 

.0990 

.0990 

.0990 

.0990 
'0990 

1.82 
2,40 
1.69 
2.99 
4,34 
1,53 
4.53 
1.47 

.09 

.09 

.01 

.01 

.01 

.05 

.05 

.05 
24 49 .117 .026 50 .1230 38 .0990 4.55 .05 
25P 
25 

50 
51 

.050 

.040 
.010 
.020 

54 
54 

.1200 
,1200 

44 
44 

.0970 

.0970 
'2.40 
3.61 

.09 

.09 
26 
26 

52 
53 

.079 
.072 

.026 

.026 
48 
48 

.1210 

.1210 
30 
30 

.0910 

.0910 
2.09 
3.90 

.05 

.05 
27 
27 
28 
28 
28 

54 
55 
5b 
57 
58 

.283 

.270 

.090 

.120 

.102 

.039 

.035 

.018 

.027 

.017 

43 
43 
39 
39 
39 

.1220 

.1220 

.1240 

.1240 

.1240 

44 
44 
38 
38 
38 

.0980 

.0980 

.1000 

.1000 

.1000 

2,57 
3.99 
1,46 
2.81 
4.25 

.01 

.01 

.05 

.05 

.05 
29 
29 
40 

59 
60 
80 

.231 

.287 

.510 

.018 

.039 

.116 

38 
38 
27 

.1220 

.1220 

.4670 

38 
38 
28 

.0970, 

.0970 

.4700 

3,33 
4,43 
4.35 

.05 

.05 

.05 
41 
41 

81 
82 

.165 

.369 
.054 
.178 

40 
40 

.4710 

.4710 
30 
30 

.4710 

.4710 
1.42 
2.94 

.05 

.05 
41 
42 
43 
44 

83 
84 
85 
86 

.110 

.540 

.530 

.503 

.017 

.133 
M155 

.154 

40 
-64 
51 
45 

.4710 

.4680 

.4680 

.4700 

30 
24 
60 
48 

.4710 

.4700 
. .4710 
.4700 

4.27 
3,55 
4,02 
2.26 

.05 

.05 
'09 
.01 

45 87 .480 .093 43 .4710 55 .4720 2.98 .05 
46 
47 

88 
89 

.506 
1.188 

.124 

.215 
58 
57 

.4680 

.4700 
70 
54 

.4720 

.4710 
4.30 
2.88 

.05 
'05 

48 
49 
50 

90 
91 
92 

.984 

.512 

.494 

.131 

.153 

.103 

54 
53 
47 

.4700 

.4710 

.4680 

42 
38 
48 

.4720 

.4710 

.4700 

3.83 
4,13 
2.49 

.05 

.01 

.05 
51 93 .995 .173 47 .4710 45 .4720 1.72 .09 
52 94 .981 .108 57 .4610 60 .4640 3.00 .05 
53 

215 
95 
105 

.498 

.112 
.103 
.023 

61 
15 

.4700 

.1010 
58 
20 

.4700 
'0990 

3.09 
1.41 

.09 
'05 

215 
218 
716 
713 

1 

106 
107 
112 
.113 
201 

.049 

.284 

.990 

.493 

.560 

.007 

.032 

.160 

.116 

.045 

15 
45 
22 
46 
-0 

.1010 

.1000 

.4480 

.4500 
* 

20 
28 
25 
30 
0 

'0990 
.0980 
e4580 
.4530 

3.23 
1,95 
1,78 
3,92 
2,17 

.05 

.05 
*09 
.09 

-0. 
1 202 .157 .023 -0 * -0 * 3,20 -0. 
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Table V-2 (Concluded)
 

2 ?03 .043 .009 -0 * -0 2 ,09 -1 
2 204 .104 .023 -0 * -0 * 3.55 - . 
2 205 .072 .015 -0 * -0 * 4.44 -0,
3 206 .622 .034 -0 * -0 * 2,08 -0. 
3 207 1.696 .084 -0 * -0 * 3.61 -0.
 
4 208 .129 .029 -0 * -0 * 1.51 -0. 
4 209 .139 .036 -0 * -0 * 2.68 -0, 
4 210 .249 .055 -0 * -0 * 3,64 -0, 
1 214 .560 .045 -0 * -0 * 2.17 -0. 
1 215 .157 .023 -0 * -0 * 3.20 -0. 
2 216 .043 .009 -0 * -0 * 2.09 -0,
2 217 .104 ,023 -0 * -0 * 3.55 -0. 
2 218 .072 .015 -0 * -0 * 444 0 
3 219 .622 .034 -0 * -0 * 2.08 -0,
 
3 220 1.692 .084 -0 * -0 * 3.61 .01.
 
4 221 .129 ..029 -0 * -0 * 1.51 -0. 
4 222 .139 .036 -0 * -0 * 2i68 -0. 
4 223 .249 .055 -0 * -0 * 3.64 -0,
6 252 .368 .076 .-O * - * 3.10 -0. 
6 253 .276 .074 -0 * -0 * 4.33 -0. 
7 254 .181 .048 -0 * -0 * 1.68 -0, 
7 255 .417 .117 -0 * -0 2.96 -0,
7 256 .273 .059 -0 * -0 * 4,42 -0. 

11 260 .160 .033 -0 * -0 * 1,33 -0. 
11 .261 .270 .065 -0 * -0 * 3.02 -0. 
ill 262 .305 .087 -0 * -0 A 4.38 -0. 
6 264 .368 .076 -0 * -0 * 3.10 -0,
6 265 .267 .074 .0 * -0. * 4.33 -0, 
7 266 .181 .048 -0 
 * -0 * 1.68 -0. 
7 267 .417 .117 -0 * -0 * 2,96 -0. 
7 268 .273 4059 -0 * -0 * 4.42 --0. 

11 272 .160 .033 -0 * -0 * 1.33 -0. 
11 273 .270 .065 -0 * -0 * 3,02 -0, 
11 274 .305 .087 -0 * -0 * 4,38 -0, 
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Table V-3 Actual Crack Data, Fatigue-Cracked Transverse Welded Panels with Crowns 

PANEL COACK CIACK C'ACK TNTTTkL FINAL CRACK POSITION 

NO. Vo. LNGTH DEPTH FINISP THICKNFSS FINISH THICKNFSS X Y 

I I .047 o015 48 .122G 60 .0960 .09 6.17 

1 2 .067 .PI9 43 .12;P 60 .0960 .09 7.73 

2 3 .067 .017 44 .1220 60 .0983 ,C5 6.36 

2 4 .,035 .i3 44 1220 60 .0980 .05 6.65 

3 
3 

5 .100 
*103 

.C21 
024 

59 
59 

.123C 

.1230 
58 
F8 

.0990 
.0990 

.05 

.05 
4.33 
8.40 

4 7 .039 .310 39 .i27C 50 .1000 .05 6.20 

4 a .163 .517 39 .123, 50 .1000 .05 7.00 

5 3 .1±1 .23 67 .1220 62 .0980 .05 7.56 

6 
6 

10 
I 

014 
.128 

.q38 
;021 

51 
51 

.1220 

.1220 
54 
54 

.0990 

.0940 
.01 
0: 

4.83 
7.86 

7 12 .292 .145 53 .1220 658 .09 .05 5.31 

8 13 .286 .039 43 .1230 62 .0970 .05 4.03 

6 14 .295 .039 43 1230 6? .0970 .05 6.20 
15 .282 .03; 43 .123C E2 .0970 .05 8.22 

9 
9 

1 
17 

.966 

.067 
.[13 
.C20 

44 
44 

.1220 

.1220 
56 
56 

.0990 

.0990 
.09 
.09 

5.03 
6.29 

9 
10 

18 
is 

.057 

.172 
.[13 
.022 

44 
55 

.1220 

.1230 
56 
46 

.3990 

.0980 
.09 
.05 

7.57 
4.65 

10 
11 
11 

20 
21 
22 

.306 

.2R3 

.273 

.04R 
C043 

.C41 

55 
43 
43 

.1230 

.123C 

.1230 

46 
46 
46 

.0960 

.0990 

.0990 

.05 

.05 

.05 

7.60 
5.09 
8.56 

12 23 .279 .0.1 2: .122n 43 1o00 .09 8.06 

13 24 .065 029 39 .1220 52 .0980 .05 5.12 

13 
13 
14 
30 
31 
32 
32 

25 
2E 
27 
61 
62 
63 
64 

.061 

.657 
.101 

1.032 
.493 
.234 
.397 

.0?4 

.030 

.13 

.151 
.083 
,057 
.147 

33 
. 39 

44 
63 
33 
52 
52 

M1220 
1220 
.1242 
.463i 
.467C 
.46F0 
.46Ef 

52 
52 
46 
50 
26 
34 
34 

.1950 

.0938 

.0990 
.4680 
.4633 
.4660 
.4660. 

.C5 

.05 

.09 

.u5 

.09 

.05 

.05 

6.58 
8.04 
6.70 
6.12 
4.98 
6.94 
8.31 

33 65 1.435 .?35 61 .471n 33 .4700 .05 5.0 

34 66 .49B .122 53 .4730 26 .4660 .05 4.90 

35 67 .976 '.136 53 .4690 42 .4760 .05 6.54 

35 
36 
36 

6B 
69 
70 

.941 

.478 

.478 

.109 

.107 
-I16 

53 
64 
64 

.4690 

.4690 

.4690 

42 
43 
48 

.4760 

.4710 

.4710 

.05 

.O5 

.05 

10.71 
4.20 
8.94 

36 
37 

71 
72 

.471 
,35 

:130 
.147 

64 
51 

.4690 

.4680 
48 
46 

.4710 

.4700 
.05 
.09 

13.71 
5.07 

37 73 .992 .129 51 .4680 46 .4700 .01 11.13 

38 
38 

74 
75 

.930 
1.085 

13 
.169 

66 
66 

.462C 

.4620 
60 
6C 

.4680 

.4680 
.05 
.05 

4.58 
8.45 

38 76 1.376 .174 66 .4620 60 .4680 .05 12.59 

39 
39 

77 
78 

.519 

.493 
.091 
.n94 

56 
56 

.4680 
.460" 

55 
55 

.4670 

.4670 
.01 
.01 

4.40 
9.06 

39 79 .482 .085 56 .4680 55 .4670 .09 13.84 

54 
54 
54 

96 
97 
98 

.11 

.123 

.112 

.018 

.036 
.01a 

43 
40 
40 

.422C 

.422C 

.4220 

46 
46 
46 

.0980 

.0930 

.0930 

.01 

.01 

.09 

4.61 
6.86 
9.11 

55 
55 
55 

113 
113 

93 
100 
101 
132 
103 

.260 

.126 

.148 

.229 

.274 

.045 

.24 
G029 
.345 
.035 

35 
35 
35 
46 
46 

.4250 

.42'5 

.425C 

.100 

.100 

36 
36 
36 
22 
22 

.1010 

.Ii0 
,1010 
.098 
.0983 

05 
.05 
.35 
.09 
.09 

4.38 
6.38 
9.42 
5.32 
7.17 

113 
505 

104 
109 

.288 

.513 
.041 
.122 

46 
19 

.100 

.465" 
22 
30 

.0990 

.4E70 
Gg9 

.05 
9.73 
9.58 

506 
506 

8 

110 
111 
257 

.485 

.454 

.233 

.093 

.087 

.066 

22 
2? 
-13 

.4300 

.4300 
24 
24 
-0 

.4500 

.4500 
.09 
.01 

-0. 

4.18 
9.27 
C.50 

8 258 .065 .015 -1 - -.. 8.90 
8 259 .152 .040 -0 4 -O -3. 11.60 

8 269 .233 .066 -0 -0 -0. 6.50 
3 270 .065 .015 -0 -0 * -0. 8.90 

9 271 ,,152 ".040 -0 -0 -0. 11.60 

ORIINALPAV 'IS ..... . , 
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Table V-4 Actual Crack Data, Fatigue-Cracked Flush, Longitudinal Welded Panels with Crowns
 

PANEL 
NO. 

CRACK 
NO. 

CRACK 
LENGTH 

CRACK 
DEPTH 

INITIAL 
FINISH THICKNESS 

FINAL 
FINISH THICKNESS 

CRACK POSITION 
X v 

8 
8 

501 
562 

.07a 

.U45 
.00 
*o9 

30 
3u 

.1080 
i08j 

20 
20 

.1083 

.1086 
1.52. 
2.58 

.05 

.U5 
8 
8 

503 
504 

.63 

.U88 
.14 
,025 

30 
30 

i±o86 
.1080 

20 
20 

1j80 
.1080 

3.68 
4.37 

.05 

.05 
10 
U,0 
11 
i1 
11 
11 
12 
12 
12 

505 
506 
57 
5a8 
509 
Siu 
511 
512 
513 

.083 

.37 
V543 

.u 7 2 

.085 

.073 

.396 

.337 

.347 

.017 

.o09 
'.021 
.a15 
Li13 

.21 

.058 

.058 

.056 

15 
15 
35 
35 
35 
35 
lo 
10 
16 

,040 
.i04t 
.109u 
.19 
.1090 
.1090 
.j8G 
.108L 
.1080 

20 
20 
28 
28 
28 
28 
3U 
30 
30 

1j90 
.1091 
.1120 
.1120 
.1123 
.112o 
.093i 
.093J 
.593G 

2.19 
4.48 
2.38 
3.16 
3.83 
4.14 
1.69 
2.45 
3.52 

.65 

.J5 
c01 

.69 

.01 

.09 
05 
.05 
.5 

1 
15 
15 

514 
515 
516 

.324 

.089 

.a93 

.n43 

.024 

.020 

10 
13 
13 

.iJ~B 
1080 
.1083 

3a 
36 
36 

.093i 

.110 

.1Lia 

4.33 
2.89 
3.74 

U5 
. 5 
.05 

15 
±8 
18 

517 
518 
519 

.075 
123 
G664 

.015 

.030 

.aW14 

13 
14 

.1080 

.107 

.107C 

36 
20 
20 

.1,00 

.1100 

.10 

4.38 
1.95 
2.54 

.05 

.59 
9 

18 
18 
19 

520 
521 
522 

.j60 

.068 

.353 

.U16 

.013 

.058 

L4 
14 
18 

li70t 
107o 

.1080 

20 
2a 
30 

.110 

.1160 

.1120 

3.31 
3.97 
1.53 

aol 
.05 
.05 

19 
19 
24 
24 
27 

523 
524 
525 
526 
527 

.323 

."56 

.073 

.150 

.212 

.044 

.012 

.014 

.045 

.039 

18 
18 
11 
11 
34 

.1080 
,1U8U 
1o00 
.ldO6 
.1080 

30 
30 
25 
25 
28 

.1124 

.112 

.1040 

.1040 

.1050 

3.16 
4.85 
3.03 
4.49 
1.6 

5S 
05 
.i5 
.65 
.09 

27 
27 
27 

528 
529 
530 

.343 

.271 

.283 

.058 

.46 

.051 

34 
34 
34 

.108o 
,±08W 
.1ae 

28 
28 
28 

.150 

.1050 

.1050 

2.28 
3.03 
4.06 

c51 
.09 
.9 

950 
954 
950 
950 

531 
532 
533 
534 

.348 

.343 

.378 

.337 

.053 

.C65 

.t53 
B06C 

12 
12 
12 
12 

.0930 

.0934 

.0930 
,U93U 

36 
36 
36 
36 

.1000 
. .100d 
.10o 
.loo 

2.15 
2.95 
2.53 
3.45 

.01 

.41 

.U9 

.o9 
951 
951 

535 
536 

.157 

.339 
.021 
.049 

21 
21 

.11±0 

.1±10 
26 
26 

.1000 

.10Ga 
1.28 
2.62 

s5 
US 

951 
30 
30, 
30 
30 
34 
34 
34 
34 
35 

537 
538 
539 
540 
541 
542 
543 
544 
545 
546-

.300 

.228 

.194 

.191 

.193 
5C6 

.708 

.630 

. 5u2 

.425 

.,42 

.084 

.086 

.070 

.71 

.138 

.199 

.179 

.151 
;W3 

21 
21 
21 
21 
21 
16 
16 
16 
16 
23 

.1110 

.435i 

.435o 

.4353 

.435Q 

.44J0 

.4400 

.4466 

.4406 

.4450 

26 
20 
20 
20 
29 
18 
18 
18 
±8 
28 

.1060 

.4350 

.435Q 

.4350 

.4350 

.4400 

.4400 

.4400 

.4400 

.440Z 

3.63 
1.29 
2.11 
3.62 
4.80 
1.35 
2.38 
3.76 
4.73 
.93 

.05 

.01 

.09 

.29 

.l 

.69 

.01 
L1 

..9 

.0 

v-13 



Table V-4 (Concluded) 

35 
35 
35 

36 
36 
36 
37 
37 
37 
37 
38 
38. 
39 
39 
39 
39 
41 
41 
41 
41 
42 
42 
42 
42 
43 
43 
43 
43 
44 
44 
44 
44 
45 
45 
45 
45 
47 
47 
47 
48 
48 
48 
49 
49 
49 
49 
50 
50 
50 
so 
51 
51 

547 
548 
549 

551 
551 
552 
553 
554 
555 
556 
557 
558 
559 
563 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
579 
583 
581 
582 
583 
58' 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 

.598 

.513 

.446 

1.009 
1.176 
1.562 
.542 
.606 
.447 
.526 

1.037 
1.224 
.744 
.937 

1.098 
.793 
.13U 
.221 
.224 
.12j 
.280 
.274 
.319 
.280 
.217 
.251 
.161 
.106 
.210 
.196 
.264 
.136 
.149 
.149 
.148 
.127 
.760 

1.1±9 
.770 
.895 
1.289-
1.110 
.091 
.379 
.392 
.10 
.428 
.479 
.678 
.417 
1.061 
1.088 

.13d 

.103 

.071 

.193 

.215 

.276 

.153 

.178 

.115 

.162 

.161 

.213 

.119 

.187 

.239 
,106 
.U30 
.071 
.66 
.,33 
.113 
.164 
.079 
.097 
.067 
.086 
.043 
.08 
.065 
.057 
.095 
.037 
.040 
.035 
.031 
.029 
.120 
.227 
.120 
.143 
.229 
.214 
.021 
.170 
.182 
.&21 
.Q70 
.U95 
.178 
.079 
.195 
.207 

23 
23 
23 

14 
14 
14 
14 
14 
14 
14 
L8 
18 
21 
21 
21 
21 
14 
14 
14 
L4 
26 
20 
20 
20 
2 
2 
2U 
20 
13 
13 
13 
13 
21 
21 
21 
21 
15 
15 
15 
15 
15 
15 
22. 
22 
22 
22 
14 
14 
14 
14 
21 
21 

.4450 

.4450 

.4450 

.4450 

.4450 

.4450 

.4430 

.443i 

.4430 

.4430 

.4436 

.4430 

.4430 

.4430 

.443C 

.4430 

.4370 

.4370 

.4370 

.437u 

.4460 

.4460 

.4460 

.4460 

. 4 4 8 1 

.4480 

. 48C 

.4480 

.4460 

.446Z 

.4460 

.4460 

.445'j 

.4450 

.4450 

.4450 

.4460 

.446 

.446u 

.446C 

.4460 

.4466 

.447C 

.4470 

.447D 

.4470 

.4450 

.445b 

.445a 

.4450 

.447C 

.447i 

28 
28 
28 

24 
24 
24 
20 
20 
2 
20 
18 
18 
3 
30 
30 
30 
i5 
i5 
15 
i5 
18 
18 
18 
18 
24 
24 
24 
24 
28 
28 
28 
28 
26 
26 
26 
26 
16 
16 
16 
20 
20 
20 
18 
18 
18 
18 
25 
25 
25 
25 
30 
30 

.4400 

.4400 

.4415C 

.442o 

.4420 

.4424 

.4420 

.4420 

.4420 

.4420 

.4440 

.444i 

.4410 

.4410 

.4410 

.441C 

.439V 

.4390 

.439i 

.4390 

.445Q 

.4450 

.4450 

.4+.5e 

.4460 

.4466 

.4460 

.4460 

.4450 

.4450 

.4450 

.4456 

.445a 

.445& 

.445r 

.4450 

.4450 

. 4 45 L 

.4450 

.4450 

.4450 

.4450 

.4470 

.4471 

.4470 

.4470 

.443a 

.4430 

.4430 

.4430 

.445e 

.4450 

2.2b 
3.4*8 
4.83 

1.16 
2.90 
4.58 
1.92 
1.92 
2.97 
3.00 
1.79 
4.9 
1.90 
1.96 
4.28 
4.40 
1.07 
2.52 
3.72 
4.87 
1.3 
2.04 
3.43 
4.63 
1.28 
2.86 
4.23 
5.13 
1.61 
2.7 
3.86 
4.91 
2.05 
3.04 
4.17 
4.94 
1.83 
2.33 
3.91 
1.38 
2.87 
4.43 
2.25 
2.25 
3.73 
3.75 
1.18 
1.43 
3.67 
4.8f 
1.77 
4.13 

.65 

.05 

.Q5 

.05 

.05 

.05 

.uI 

.09 

.01 

.09 

.05 

.05 

.1i 

.09 
.01 
.09 
.05 
.05 
.L5 
.%5 
.j5 
.05 
.05 
.65 
.05 
.C5 
.k5 
.05 
.05 
.05 
.05 
.05 
.69 
.01 
.01 
.09 
.9 
.1 
-@9 
.05 
.05 
.05 
.0± 
.09 
.09 
.31 
.05 
.05 
.05 
.05 
.5 
.05 

52 
52 
53 
53 
53 
53 

500 
500 
50 
510 

9 
9 

599 
600 
6051 
602 
603 
604 
605 
606 
6W? 
608 

701 
702 

.879 
1.043 
.479 
.565 
.616 
.433 
.139 
.229 
.218 
.190 

.089 
9-02.18.108 

.154 

.215 

.109 

.137 

.155 

.083 

.036 

.08a 

.059 

.055 

.04­

.330 

45 
45 
30 
30 
3a 
30 
22 
22 
22 
22 

o, -. 

.4450 

.4450 
.450O 
.450u 
.4500 
.4500 
.438C 
.438U 
. 4 3 8u 
.438o 

40 
40 
22 
22 
22 
22 
32 
32 
32 
32 

-0 

.4430 

.443a 

.45a0 

.45JO 

.4504 

.4500 

.4400 

.44LO 

.4400 

.4400 

1.84 
3.93 
1.09 
2.22 
3.42 
4.81 
1.21 
2.29 
3.14 
4.62 

2.184.22 

.05 

.05 

.05 

.05 

.05 

.05 

.65 

.45 
L5 

.05 

G 

10 703 .073 .015 -G * -o0 1.94 -0. 
±0 
9 

704 
705 

.113 

.089 
.031 
.o14 

-0 
-a 

4 -0 
-0 

* 3.99 
2.18 

-0. 
-0. 

9 706 .108 .036 *-4 -0 4.22 -0. 
10 7a7 .073 .015 -g -0 1.94 0. 
t0 708 .113 .031 -0 -0 4 3.99 -0. 
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Table V-5 Actual Crack Data, Fatigue-Cracked Flush, Transverse Welded Panels
 

PANEL CRACK 
 CRACK CRACK INITIAL FINAL 
 CRACK POSITION

NO. NO. LENGTH DEPTH FINISH THICKNESS FINISH THICKNESS X 
 Y
 

960 609 .138 059 20 .432C 26 .4430 .05 6.94
960 610 .178 .066 20 
 .4320 26 .4436' 05 7.92

960 611 
 .2Z4 -.069 20 .432C 26 .4430 .05 9.24960 612 .3C8 124 20 .4320 26 .443 G .,.05 1G.30
960 613 .224 .679 20 .432U 26 .443Z .05 11.15960 614 .235 .089 20 .420 26 .4430 .05 12.10
961 615 .178 .054 16 
 .4410 I8 .4420' .05 5.83
961 616 .495 .215 16 .441G 18 .4420 .05 
 7.01

961 617 .195 .07B 16 .4416 18 .4420 .05 8.3
961 618 .182 .f67 16 .441L 18 .4420 .05 9.58

961 619 .235 .099 16 .4.410 18 .4424 
 .05 11,o5

961 620 .297 .071 16 .4410 18 .4420 
 .05 12.36
962 621 .2E7 .115 15 .456C 20 .453a .05 6.86
962 622 .225 .1±0 15 .4560 20 .4530 .05 7.58962 623 .239 .1L3 15 .4560 20 .4530 .-05 8.71962 624 .158 .050 15 .4560 20 .4530 .05 9.94
962 625 .186 .063 15 .4560 20 .4533 
 .35 10.69
962 626 ,160 .049 15 .4560 20 .4530 .05 12.06
 



Table V-4 lists actual flaw data for fatigue cracks in flush,
 

longitudinal weld panels. Table V-5 lists actual flaw data
 
for fatigue crack in flush, transverse weld panels.
 

NDT observations were also segregated by panel type and flaw
 
orientation and were tabulated by NDT success for each inspection
 

sequence according to the ordered flaw size. A "0" in the data
 
tabulations indicates that there were no misses (failure to
 
d~tect) by any of the three NDT observers. A "3" indicates that
 

the flaw was missed by all observers. A "-0' indicates that no
 
NDT observations were made for that sequence. Table V-6 lists
 
NDT observations as ordered by actual flaw length for panels
 

containing fatigue cracks in longitudinal welds with crowns.
 
Table V-7 lists NDT observations as ordered by actual flaw
 
length for panels containing fatigue crack in transverse welds
 
with crowns. Table V-8 lists NDT observations as ordered by
 
actual flaw length for fatigue cracks in flush, longitudinal weld
 
panels. Table V-9 lists NDT observations as ordered by actual
 

flaw length for fatigue cracks in flush, transverse weld panels.
 

Actual flaw data were used as a basis for all subsequent ordering,
 

calculations, analysis, and data plotting. Flaws were initially
 
ordered by decreasing flaw length, depth, and area. The data
 
were then stored for use in statistical analysis sequences.
 

2. Data Analysis and Presentation
 

The same statistical analysis, plotting methods, and calculations
 
of one-sided confidence limits described for use on the integrally
 
stiffened panel data were used in analysis of the fatigue flaw
 
detection reliability data.
 

3. Ultrasonic Data Analysis
 

Initial analysis of the ultrasonic testing data revealed a dis­
crepancy in the data. Failure to maintain-the detection level
 
between sequences and to detect large flaws was attributed to a
 

combination of panel warpage and human factors in the inspections.
 
To verify this discrepancy and to provide a measure of the true
 

values, 11 additional fatigue flawed weld panels containing 27
 

flaws were selected and subjected to the same Sequence 1 and'Sequence.
 
3 inspection cycles as the completed panels. An additional optimiza­

tion circle performed resulted in changes. in the NDT procedures for the
 

weld panels. These changes are shown as Amendments A and B to the
 

Appendix procedure. The inspection sequence was repeated twice (double 
inspection in two runs), with three different operators making their ­
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Table V-6 NDT Observations, Fatigue-CrackedLongitudinal Welded 

Panels with Crowns 

PENETRANT ULTRASONIC EDDY CURRENT X-RAY 

INSPECTION 
SEQUENCE, 1 -2 3 1 2 3 1 2 31 2 3 

CRACK A 
NUMBER VALUE 

207 1.696 -o -o -o 0 -0 0 -o -0 -0 -o -o -o 
220 1.692 -o -o -o o -o 0 -o -o .o -o -0 -o 
89 1.188 1 0 0 2 0 0 2 0 3 1 0 0 
93 .995 0 0 0 1 1 0 2 .1 3 .0 0 0 

112 .990 1 2 0 0 0 3 0 3 3 1 1 0 
90 .984 0 0 0 3 3 1 1 3 3 3 3 0 
94 .981 0 0 0 2 2 0 -1 1 0 3 3 0 

219 .622 -0 -0 -0 0 -0 0 -0 -0 -0 -0 -0 -0 
206 .6221-0 -0 -00 -0 0 -0 -0-0 -0 -0 -0 
201 .560 -0 -0 -0 0 -0 0 -0 -0 -0 -0 -0 -0 
214 

84 
.560 
.540 

-0 
2 

-0 
1 

-0 
2 

0-0 
2 0 

0 
0 

-0 
1 

-0-o 
0 0 

-0-0 
2 3 

-0 
3 

85 |530 1 1 0 3 3 0 2 1 3 3 3 0 
91 
80 

.512 

.510 
0 
1 

0 
2 

0 
0 

2 
2 

2 
2 

0 
0 

2 
1 

3 
3 

3 
1 

3 
3 

3 
3 

0 
3 

88 ,506 1 0 u 3 3 3 1 0 2 3 *3 0 
86 .503 0 2 0 2 3 3 3 3 3 1 0 0 
95 .498 0 0 0 0 0 0 2 3 0 0 0 0 
92 .494 1 1 0 3 -3 3 0 0 0 3 2 3 

113 
87 

.493 
480 

0 
03 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

3 
0 

3 
0 

3 
0 

0 
3 

3 
1 

3 
0 

255 
267 

.417 
.417 

-0 -0 
o0-0-

-0 0 -0 
0-0 

0 
0 

-0 
-0 

-0 
-0 

-0 
-0 

-0 
-

-0 
0 

-0 
-0 

82 .369 0 0 0 0 1 0 0 0 0 i 0 
264 *368 -0 -0 -0 0 -0 0 -0 -o -o0 -0 -0 -0 
252 
.43 

.368 

.324 
-0 

2 
-0 

2 
-0 

0 
0 
3 

-0 
0 

0 
1 

-o 
3 

-o 
3 

-0 
3 

-0 
1 

-O 
0 

-o 
1 

29 
J28 

.308 

.305 
1 
2 

1 
1 

0 
0 

3 
3 

0 
3 

0 
2 

2 
3 

0 
3 

0 3 
3 

1 
2 

0 
1 

262 .305 -0 -0 -0 0 -0 0 -0 -0 -0 -0 -0 -0 
274 305 -0 -0 -0 0 -0 0 -0 -0 -0 -0 -0-0 
45 
60 

.291 
I287 

2 
1 

1 
1 

0 
0 

3 
0 

0 
0 

0 
0 

3 
0 

3 
0 

3 
3 

3 
3 

0 
3 

0 
3 

107 .284 1 1 0 0 0 0 0 0 0 2 2 0 
,54 

253 
.283 0 
.276 -0 

1 
-0 

U 
-0 

3 
0 

2 
o 

3 1 
-0 

.3 -0 
-0 

3 
-0 

3 2 
-0 -0 

268 .273 -0 -0 -0 3 -0 0 -0 -0 -0 .­ 0 -0 -0 
256 .2731-0 -0 -0 3 -0 0 -0 -0 -0 -0 -0 -0 
261 .270 -0 -0 -0 0 -0 0 -0-0 -0 -0 -0 -0 
273 .270 -0 -0 -0 0 -0 0 -0 -0 -0 -o0-0 -0 
55 .270 0 1 0 2 2 3 2 3 3 3 3 3' 
31 

265 
.269 
.267 

2 
-0 

1 
-0 

0 
-0 

3 
0 

'3 
-0 

0 
0 

1 
-0 

3 
-0o 

3 
- 0 

2 
-0 

1 
-0 

0 
-0 

44 _,257 2 2 0 3 0 0 3 3 3 a 0 o 
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Table V-6 (Concluded)
 

CK ACT 
NO VAL 1 2 3 1 -2 1 2 3 1 2 3 

210 
223 

.249 

.249 
-0 
-0 

0 
-0 

-0 
-0 

0 
0 

-0 
-0 

'0 
0 

-0 
-0 

-0 
-0 

-0 
-0 

-0 
-0 

-(, -0 
-0 -0 

30 .239 3 0 0 2 0 0 2 3 3 2 2 0 

59 
254 

.231 

.181 
1 

-0 
2 

-0 
3 
-0 

1 
1 

0 
-0 

0 
0 

2 
-0 

3 
-0 

3 
-0 

3 
-0 

3-
-0 

0 
-0 

266 ',181 -0 -U -U 1 -0 0 -0 -00 - -0 0 -0 
81 .165 0 0 0 0 0 0 2 0 0 2 3 3 

260 .160 -0 -0 -0 0 ;0 0 -0 -0 -0 -0 -0 70 

272 *160 -0 -0 -0 0 -0 0 -0 -0 -0 -0 -0 -0 
215 .157 -0 -0 -0 0 -0 0 -0 -0 -0 -0 -0 -0 

202 .157 -0 -0 -0 0 -0 -a -0 -0 -0 -0 -0,-0 

222 
209 
208-
.L21 
47 

,139 
.139 
e129 
.129 
'120 

-0 
-0 
-0 
-0 
0 

-0 -0 
-0 -0 
-0 -0 
-0 -0 
1 0 

0 
0 
0 
0 
3 

-0 
-0 
;0 
-0 
3 

0 
0 
0 
0 
3 

-0 
-0 
-0 
-0 
1 

-0 
-0 
-0 
-0 
3 

-0 
-0 
-0 
-0 
0 

-0 
-0 
-0 
-0 
2 

-0 
-0 
-0 
-0 
2 

-0 
-0 
-0 
-0 
2 

57 o120 0 3 3 1 1 3 '1 2 2 3 1 3 

49 117 0 1 0 2 3 0 2 3 2 3 3 3 

105 .112 0 3 0 .0 1 0 0 3 3 3 3 3 

33 .110 0 0 0 1 1 0 2 3 3 3 3 2 

83 .110 -0 0 0 1 3 3 2 0 0 3 2 2 

39 
217 

.107 

.164 
0 

-0 
0 

-0 
1 

-0 
3 
0 

3 
-0 

3 
0 

.3 
-0 

3 
-0 

3 
-0 

3 
-0 

2 
-0 

2 
-0 

204 
58 

.104 

.102 
-0 
0 

-0 
3 

-0 
3 

0 
3 

-0 
3 

0 
3 

-0 
2 

-0 
3 

-0 
2 

.-0 
3 

-0 
3 

.ro 
3 

35 .100 0 0 1 2 2 2 1 Q 0 2 2 3 

38 '099 0 1 1 3 3 2 3 0 2 3 1 

48 
40 

.095 

.095 
2 
0 

1 
0 

0 
0 

3 
1 

.3 
1 

0 
1 

3 
1 

3 
3 

1 
0 

2 
2 

3 
2 

3 
2 

34 .094 0 0 0 1 3 3 1 1 0 3 3 3 

56 .090 0 3 3 1 3 3 1 1 1 3 3 3 

-52 
53 

205 
218 

.079 
.072 
.072 
.072 

1 
1 

-0 
-0 

1 
1 

-0 
-0 

0 
0 

-0 
-0 

0 0 
0 0 
3 -0 

;,3 "0 

0 
0 
0 
0 

2 
1 
-0 
-0 

3. -0 
3 -0 

-0 -0 
-0 -0 

0 
0 

-0 
-0 

2 
1 

-0 
-0 

0 
0 

-0 
0 

32 .070 0 0 0 2 0 2 3 0 3 3 3 3 

41 '051 0 0 0 3 3 3 3 3 3 3 2 2 

36 .050 1 0 0 1 3 1 1 3 2 3 3 3 

37 .050 3 1 z 2 1 2 2 3 3 3 3 2 

50 .050 0 1 1 3 3 3 3 3 3 1 2 3 

106 '049 1 3 3 3 1 0 3 3 3 3 3 3 

46 
216 
203 

.047 
.043 
.043 

3 
-0 
-0 

3 
-0 
-0 

3 
-0 
-0 

L3 
3 
3 

3 
-0 
-0 

3 
0 
0 

.1 
-0 
-0 

3 
-0 
-0 

0 
-0 
-0 . 

3 2 
0 -0-0 

-0 -0 

2 

-0 

51 .040 0 1 1 3 3 3 2 3 3 2 2 3 

42 .021 0 0 0 3 3 3 3 3 3 3 3 1 
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Tab e V-7 NDT Observations, Fatigue-CrackedTransverse WeZded 

Panels with Crowns 

PENETRANT ULTRASONIC EDDY CURRENT X-RAY 

INSPECTION 
SEQUENCE 1 2 3 1 2 3 1 2 3 1 .2 3 
CRACK ACTUAL 
NUMBER 'VALUE 

E 3 0 0 0 . 0 0 0 n 0 0 a a 
75 1.085 0 0 .0 0 0 0 0 1 3 3' 2 
76 
61 

0 7 , 
1.02 

G0. 
c 

C 
C 0 0 

0 
0 

1 
a 

0 
0 

3 2 
3 

-2 
0 

73 .992 0 0 1 0 4 0 2 3 
72 .935 0 0 0 - 0 1 0 0 0 0 0 1 
67 .97 C 0 a 0 0 C 0 3- 3 2 
66 
74 

.941 
.930 

0 3 
0 

3 
1 

1 
0 

0 
0 

0 
a 

0 
0 

1 0 
C 

a 
0 

3, 
3 

3 
3 

3 
3 

77 
10O 

.5t9 

.513 
a 
0 

0 0 
080 

1 0 0 0 0 
a 

0 
a 

3 
3 

31 
3 

3 
2 

79 0 a a 3- 3 
66 
62 

.43F 

.493 
0 
0 

0 0 
0a 

3 2 
3 

7 
3 

0 
0 

0 
3 

0 
3 

3 
3 

1 
1 

3 
.3 

11G 4 0 0 i 1 C 3 0 0 0 3 1 2 
79 .482 0 0 C 2 G 3 1 C 1 3' 3' 3 

S .478 0 0 0 1 0 0 0 0 0 3 3 3 
70 
71 

.478 

.4?1 
0 
0 

C 
C 

I 
2. 

. 0 
0 

-
1 0 

fl 
2 

p 
1 2 

0 
3 

g-
3 

0 
3 

.11 .454 a a a 0 1 -3 0 0 3 1 2 
64 .337 0 G 1 2 3 3 0 0 0 2 3 '3 
20 
14 

.30F 

.295 
0 
0 

C 
0 

0 
0 

I 
0 

G 
0 

0 
0 

1 
1 

0 
0 

2 
0 

0 
1 

0 
I 

0 
0 

- 12 
1-6 4 

.292 
.282 C 

0 0 
0 

C 
.0 

a 
0 

0 
0 

0 
0 

0 
C 

0 3 
0 

3 
2-

0 
2 

0 
0 

17 .23F 0 0 0 0 0 0 ± 0 0 2 0 1 
21 .283 1 0 0 1 0 3 1 3 n 2 3 0 
1- .292 0 0 0 3 0 0 1 0 G 2 1 G' 
23 279 0 0 0 1 0 .0 0 1 1 3 3 2 

101 .274 0 a 0 0 0 0 0 0 0 1 ± 0 
22 .273 0 00 3 0 - 0 3 0 0 0 
g 21 1 0 0 0 1 a 9 a a 

267 
73 

.23 
0 

-
3 

-0 
1 

-3 
2 
0 

3 
-0 

3 
0 

0 
-0 

0 
-0 

0 
-0 

3 
-0 

3 
-0 

3 
-0 

269 
102 

.233-0 

.2;9 0 
-0 

0 
-0 

n 
0 
0 

-0 
0 

G 
0 

-0 
0 

-0 
1 

-. 
C 

-0 
2 

-D -n 
2 0 

I .172 1 0 0 I G 0 a a 0 3 2 3 
211 E -0 -0-0 C-U-0-0 C -0 -G -0 -0 
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Table V-? (Concluded) 

CK ACT 
NO VAL 1 2- 3 1 2 3 1 2 3 1 2 3 

229 152 -p -o-- Q - -C -0 -0 -0 -0 

271 .152 -0 -0 0-0 a -0 -c -0 -0 -0 -0 
101 .148a 0 1 0 2 0 C 3 1 3 -3 2 
11 .12B o 0 0 0 0 ± 3 0 3 2 3 3 

i0a .126 a 1 0 1 0 . 1 0- 3 2 2. 
9? .123 0 3 .3 2 3 3 3 0 2 3 3 3 

225 .123 -0 -0 -0 3 -0 0 -0 -0 -0 -0 -0 -0 
212 123 -0 -0 -0 1 -0 0 -0 -0 -0 -0 -0 -0 
ge ,113 0 3 3 3 3 2 2 2 3 3 3 ± 
98 .il? a 3 3 1 1 0 3 2 2 

g .111 3 2 1 3 3 3 2 0- 0 3 3 2 
10

6 
,iOC
.102 

3 
'0 

0
0 

C
0 

1
± 

3
0 

3
0 

2
± 

2
2 

3
2 

3
4 

3
2 

3
3 

27 .101 0 1 0 3 3 3 2 3 1 2 3 3 
5 .1-0 c 0 3 3 2 2 2 

21, .093 1 --.­ 0. - -0. 0 -0-0 -0 -0 -0 -0 
2262 

.093

.067 
,,-C

0 
--

P 
-

'2 -1-
-0

0 
0 -0

3 
-0 -0

72 
-

' 
-0

3 
-0

± 

3IE .057.GEE 0
0 

0
2 

0
2 

3
? 

3
3 

3
3 

3
3 

1
1 

3
2 

3
3 

3
2 

3
3 

259 .065 -0 -0 -0 2 -0 0 -0 -0 -G -c -0 -0 
270 .065 -0-0-0 3-0 0 -0-0-0 -0-0,-a 

24 .069 0 1 a a 0 3 1 3 1 ± 2 a 
8 .063 0 ±1. 3 3 3 3 c 2 3 3 2 

25 .061 C 1 0 1 0 0 2 3 3 1 2 1 
18 .057 1 0 3 3 3 2 7": 3 3 3 3 
26 .057 0 1 2 C 0 a j 3 3 1 2 a 
17 .047 0 2 2 3 2 3 3 1 2 3 3 3 

1 .047 2 2 ,2 3 3 3 3 3 3 3 2 3 
7 .070 3 2 2 2 0 0 3 3 0 3 2 3 
4 ,0. 2 0 0' 1 0 0 3 2 0 2 3 2 
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Table V-8 NDT Observations, Fatigue-Cracked Flush, Longitudinal 

Welded Panels 

PENETRANT ULTRASONIC EDDY CURRENT X-RAY 

INS PECTXON 
SEQUENCE 1 2 3 1 2 3 1 2 3 1 2 3 

CRACK ACTUAL 
NUMBER VALUE 

552 1.562 0 0 0 0 0 1 0 0 0 0 0 0 
5618T 1.289 1 0 0 0 0 0 0 0 0 0 0 0 
558 1.224 0 0 0 0 0 0 1 0 0 0 0 0 
551 1.176 0 0 0 0 0 0 0 0 0 0 0 0 
584 1.1"19 0, 0 0 0 0 0 0 0 0 0 0 0 
588 1.110 1 0 0 0 0 0 0 0 0 1 0 0 
561 1,098 0 0 0 0 1 0 0 0 0 0 0 0 
598 1.088 0 0 0 0 0 0 0 0 0 0 0 0 
597 ;I061 0 0 0- 0 0 0 0 0 0 0 1 0 
600 1.043 0 0 0 0 0 0 0 0 0 0 0 0 
557 1.037 0 0 0 0 0 0 0 0 0 0 1 0 
550 1.009 0 0 0 0 0 0 0 0 0 0 0 0 
560 .937 0 ,0 -0 0 0 0 0 0 0 3 3 0 
586 .895 1 0 0 0 0 0 0 0 0 0 0 0 
599 .879 0 0 0 0 0 0 0 0 0 0 0 0 
585 .770 0 0 0 0 0 0 0 0 0 3 2 0 
583 ,760 0 0 0 0 0 0 0 0 0 3 3' 0 
559 .744 0 0 0 0 0 0 0 0 0 0 0 0 
543 ,708 1 0 0 0 0 0 0 0 0 0 0 0 
562 .703 0 0 0 0 0 0 0 0 0 3 3 3 
595 o678 0 0 0. 0 0 0 00 0 0 1 1 0 
544 .630 0 0 0 0 0 0 0. 0 0 0 1 0 
603 .616 0 0 0 0 0 0 0 0 0 0 0 0 
554 .606 0 0 0 0 1 0 0 0 0 3 3 O 
547 *598 0 0 0 0 0 0 0 0 0 0 2 0 
602 .565 0 0 0 0 0 0 .0 0 0 1 0 0 
553 .542 0 0 0 0 0 0 0 0 0 . -1 0 
556 526 0 0 0 0 1 0 0 0 0 2 3. 0 
548 .513 0 0 0 0 0 0 0 0 0 3 3 0 
542 9506 0 0 0 0 0 0 0 0 0 2 .2 0 
545 .502 .0 0 0 2 1 0 0 0 0 .3 3 1 
594 o479 0 0 0 0 1 0 0 0 0 3 3- 0 
601 *479 0 0 0 0 0 0 0 0 0 3 1 0 
555 o447 0 0 0 0 0 0 -0 0 0 2 3 0 
549 ,446 0 0 0 0 0 0 0 0 0 .3. -3 3 
604 .433 0 0 0 0 10 0 0 0 0 2 3 3 
593 .428 0 0 0 0 0 0 0 0 0 3 3 0 
546 .426 0 0 0 0 0 0 0 0 0 3 3 0 
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Table V-8 (Continued)
 

CK-
NO 

Ac
VAL 2 3i 1 2 3, 1 2 3. 1 .2 3. 

596 .417 0 0 0 0 0 0~ 0 0 0 . 3 3 
511 .396 0 0 0 0 0 0 0 6 0- 1 00 
591 .392 0 0 0 0 2 0 0 0 0 -o0 0. 
590 .379 0 0 1 0 2 2 3 3 0 1 -3 3 
533 9378 0 -0 0 0 .0 0 0 0 0 0 0 
522 .353 0 0 0 0 0 0 0 0 0 1 10 
531 .348 0 0 .0i 0 0 0 0 0 0o 0 0 0 
-513-528 .347.343 0 o 00 010! 00I 0 0 0 0 0 0

0. 
0
0 

0 

532 .343 0 0 0 0 0 0 00 0 0 0 0 
.536 .339 0 0 0. 0 0 0 0 0 0 3 2 0 
512 
-534 

w337 
*337 

0 
0 

0 
0 

0, 
'0 

0 
0 

0 
0 

0 
0 

- 0 
0 

0 
-0 

0 '.-1 

-0 
0 
0 

.0 
0 

514.324 
523 .323 

0 
0 

0 
0 

0, 
0 

. 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

A0 
0 

0 
1 

0 
0 

569 .319 .0 0 0 0 0 0 0 0 0 -3 2 3 
53.7 .300 'o 0 0 ,0 .0 ..o- 0o b -. - .3 3 0 
530 .283 0 0 0- 0 1 0 o o -3 0 0 
-567 *280 0 1 0 0 0 0 0 0 0 0 1 3 
570-' .280 0 0 0 -0 1 0 0 0 0 -3- 3 2 
568 .274 0 -0 o 0 0 0 0 -0 o.2 1 3 
529 .271 0 0 0 0 0 0 -O 0 0 3 0 0 
577 .264 0 0 0 0 o o o o 3 2 2 
572 .251 0 0 0 0 0 0 0 0 0. 3 3 3 
606 .229 0 1 1 0 0 a 0 0 0 2 2-3 
538 .228 O0-­ 0 0 0 0 0 0 0 3 -3-.3 
565. .224 0 0 o 0 0 0 0 0 0 2 3 .'­
564 .221 
607 .218 

0 
0 

0 
0 

0, 
0 -

.0 0 
o0 

0. 
0 

0 
0 

0 
0 

0 
0 

3 
3 

1 3 
3.3 

571 .217 0 0 0 0 6 0 0 0 0 3 3 3 
-527 .212 0 0 0 0 0 0 1 0 0 3 -3 -­l 
-575 
576-

.210 

.196 
0 
0 

0 
0 

0-
0 ' 

0 
0 

0 
0 

0 
0 

.0 0 
- 0 

0
0 -

.­ 3 
3 

-3 
3 

-
3 

,539 
541 

.194 

.193 
0 
0 

0 
0 

0 
0 

0 -0 
0 0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
3 

3 
3 

2 
-3 

540 .191 0 0 0 A 0 0 0 0 0 '2 3 3 
608 . 190 0 0 1 0 0 2 0 0 0 3 -3 ;3 
573 .161 0 0 0o3 3- -3 0 0 0 2 3 .3 
535 .157 0- 0-0 0 0 0 .0 .3 33 .3 0 
524 .156 0 0 0 0 0 0 3. 3 3 .3 3 -3 
526 .150 0 0 0 -3 0 o 0 0 0 3 2 1 
580 .149 0 0 0 0 0 0 0 0 0 3 3 0 
579 .149 0 o 2 .1 1 0 0-3 0 0 0 0 



Table V-8 (Concluded) 

"CK ACT3 
NO VAL 1 -2 3, 1 2 3 1 2 :3 1. 2 3"-, 

581 *148 0 0 0 0 0 0 0 0 0 3-3' 3 
605 9139 u 0 0 0 0 3 0 0 0 9'3, 
578 .136 0 1 3 0 0 0 0 U 0 3 3' 3 
563 .130 Q 2 3 0 0 0 0 0 0 :" 3 ' '3' 
582 .127 0 0 0 3 1 3 0 1 '0 '3 3 3 
566 *120 0 0 0 0 0 0 '0 0 0 2 3 2 
518 .120 0 0 0 3 0 0 0 0 0 3 2 1 
704 .113 -0 -0 -0 0 -0 0 -0 -0 -0 -0, -0 -0 
708 ,113 -0 -0 -U 0 -0 0 .-0 -0 -0 -0 1-0 -­0 
706 
-702 

.108 

.108 
-0-0)-0 
-0 -0 -0 

0 
o 

-0 
-0 

0 
0 

-0 
-0 

-0 
-0 

-0 
-0 

-.0''.-0 
'0' -0 

-- 0' 
!O 

574 ,106 0 -2 1 1 3 .2 '3 3 3 "'3, 3 3 
592 .100 0 3 1 0 0 3 3 3 0 - 3. 31 :3­
516 .093 0 0 0 3 1 0 0 0 3 3 '3 0­

589 .091. 0 3 1 0 0 0 0 0 0 "2 0 0, 
705 '089 -0- 0 -0 0 -0 0 -0 -0 0 0 -0 "0' 
515 
701 

.08,9 
,089 

0 
-0 

0-
-0 

0 
-0 

3 
0 

0 
-

0 
0 

0 
-0 

0 
-0 

3 
-0 

3 
-0 

3. 
-0 

1' 
-0 

504 .088 1 0 0 3 3 0 0 3 3 3 3' 0. 
509 
505 

*085 
.08 

1 
0 

1 
0 

1
0 

3 
.3 

3 
0 

3 
0 

3 
0 

3 
.0 

3 
0 

.3' 3 3 
.3"2 .3­

517 .07 .0 0 0 3 0 0 0 0 3 *3 3 1 
510, .07' 0 0 0 0 1 3 0 0 .0 . 3 3 
707 .07i -0 -0 -0 3 -0 0 -0 -0 -0 -0 -0 -0 
-7-03 .07 -0 -0 -0 3 -0 0 -0 -0 0' -0 -0 -0 
508 .07i 0 0 0 3 1 3 3 0 3 3 3 3 
525 
501 

.07( 
,07( 

0. 
0 

0 
0 

0 3 
3 

3 
0 

0 
01 

0 
0 

0 
3 

3. 
31 

3 
-0 

2 
3 

2 
0 

.521 .06 0 0 0 3 0 1 0 0 0 1 3 3 

519 .06' 0 0 0 2 0 2. 0 0 0. 3 3 3 
503 ,06. 0 0 0 2 3 0 3 3 -0 3 3 
520- 061 0 0 0 0 0 1 0 0 0 3 3 2 
502 .04 0 1 0 0 0 3 "0 3 3 -0 3 2' 
507 .04. 1 2 1 3 2 3 3 0 3 3 3 3 

"-506 ,03' 0 2 2 3 0 0 3 3' 3 3 2 3 

V-23
 



Table V-9 NOT Observations, Fatigue-Cracked Flush, Transverse 

Welded Panels 

PENETRANT ULTRASONIC EDDY CURRENT X-RAY 

INSPECTION 
SEQUENCE 1 2 3 1 2 3 1 2 3 1 2 3 

CRACK ACTUAL 
NUMBER VALUE 

616 e495 0 0 0 0 0 3 0 0 0 3 0 0 
612 .308 0 0 0 3 0 1 0 0 0 .3 3 3 
620 *297 0 0 0 0 0 3 0 0 0 3 3 3 
621 .267 0 0 0 0 3 3 0 0 0 3 3 3. 
623 .239 0 0 0 0 0 2 0 6 0 3 3. 3' 
619 *235 0 0 0 0 0 2 0 0 0 3 3 3 
614 o235 0 0 0 3 0 3 0 0 0 3 -3 -3 
622 .2Z5 0 0 0 0 0 1 0 -0 0 .3 3 3 
613 .224 0 0 1 3 0 1 0 0 0 ',3 3 3 
611 .204 0 2 3 3 2 2 0 0 0 -3 3 3, 
617 .195 0 0 0 0 0 3 0 0 0 .3 3 3 
625 *186 0 2 1 1 0 2 0 0 0 .3 3 3 
618 .182 0 0 0 0 0 3 0 0 0 3 3- 3 
615 .178 0 0 0 0 0 1 0 3 0 .3 3 -3 
610 .178 0 0 0 3 0 1 0 0 0 3 3 3 
626 e160 0 0 2 2 3 3 3 3 0 3. 3 .3 
624 158 0 1 0 0 0 2 3 3 0 ?3 3 3 
609 ,138 0 1 3 3 0 1 0 0 0 .3 3 3 
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own C-scan recordings, interpretihg the results, and documenting the
 
inspections. The operatorresponsihle for the original optimization
 
and recording-sequences was eliminated from this repeat evaluation.
 
Additional care was taken to align warped panels to provide the best
 
possible.evaluati6n.
 

The results -of this repeat-cycle showed a definite improvement in
 
the reliability of the ultrasonic method in detecting fatigue cracks
 
in welds. The two-data files were merged on the following basis:
 

* 	Data from the- repeat evaluation were ordered by actual flaw
 

dimension;
 

* 	An analysis was performed by counting down from the largest
 
flaw to the first "miss" by the ultrasonic method;
 

* 	The original data were truncated to eliminate all flaws larger
 
than that of the first "miss" in the repeat data;
 

* 	The remaining data were merged and analyzed according to the
 
original plan. The merged actual data file used for processing
 
Sequences 1 and 3 ultrasonic data is, shown in Tables V-2 through
 
V-4. Tables V-5 through V-9 list nondestructive test observations
 
by the ultrasonic method for the merged data as ordered by actual
 
crack length;
 

* 	The combined data base was analyzed and plotted in the same
 
manner as that described for the integrally stiffened panels.
 

DATA RESULTS
 

The results of inspection and data analysis are shown graphically
 
in Figures V-4 through-V-19. Data are plotted by weld panel type
 
and crack orientation in the welds. This separation and plotting
 
shows the differences in detection reliability for the various panel
 
configurations.- An insufficient data base was established for optimum
 
analysis of the flush, transverse panels at the 95% reliability
 
and 95% confidence level. The graphical presentation at this level
 
is shown and it may be used to qualitatively assess the etching and
 
proof loading of these panels.
 

The results of these analyses show the influences of flaw geometry,
 
flaw tightness and of inspection process influence on detection
 
reliability.
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VI. CONCLUSIONS AND RECOMMENDATIONS
 

Liquid penetrant, ultrasonic, eddy current and x-radiographic
 
methods of nondestructive testing were demonstrated to be applicable
 

and sensitive to the detection of small, tightly closed flaws in
 

stringer stiffened panels and welds in 2219-T87 aluminum alloy.
 

The results vary somewhat for that established for flat, parent
 

metal panel data.
 

For the stringer stiffened panels, the stringer member in close
 

proximity to the flaw and the radius at the flaw influence detection
 

by all NDT methods evaluated. The data are believed to be represent­

ative of a production depot maintenance operation where inspection
 

can be optimized to an anticipated flaw area and where automated
 

C-scan recording is used.
 

LOP detection reliabilities obtained are believed to be representa­

tive of a production operation. The tightness of the flaw and
 

diffusion bond formation at the flaw could vary the results
 

considerably. It is-evident that this type of flaw challenges
 

detection reliability and that efforts to enhance detection should
 

be used for maximum detection reliability.
 

Data obtained on fatigue cracked weld panels is believed to be a
 

good model for evaluating the detection sensitivity of cracks
 

induced by production welding processes. The influence of the weld
 

crown on detection reliability supports a strong case for removing
 

weld bead crowns prior to inspection for maximum detection
 

reliability.
 

The quantitative inspection results obtained and presented herein
 

add to the nondestructive testing technology data bases in detection
 

reliability. These data are necessary to implement fracture control
 

design and acceptance criteria on critically loaded hardware.
 

Data may be used as a design guide for establishing engineering
 

This use should however, be tempered by
acceptance criteria. 

considerations of material type, condition and configuration of
 

the hardware and also by the controls maintained in the inspection
 

processes. For critical items and/or for special applications,
 

qualification of the inspection method is necessary on the actual
 

hardware configuration. Improved sensitivities over that reflected
 

in these data may be expected if rigid configurations and inspection
 

methods control are imposed.
 

The nature of inspection reliability programs of the type described
 

herein requires rigid parameter identification and control in order
 

to generate meaningful data. Human factors in the inspection
 

process and inspection process control will influence the data
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output and is not readily recognized on the basis of a few samples.
 

A rationale and criteria for handling descrepant data needs to be
 

developed. In addition, documentation of all parameters which may
 

influence inspection results is necessary to enable duplication
 

of the inspection methods and inspection results in independent
 

evaluations. The same care in analysis and application of the
 

data must be used in relating the results obtained to a fracture
 

control program on functional hardware.
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-APPENDIX A-


LIQUID PENETRANT INSPECTION PROCEDURE FOR WELD PANELS, STIFFENED PANELS, 

AND LOP PANELS 

1.0 	 SCOPE
 

1.1 	This procedure describes liquid penetrant inspection of
 

aluminum for detecting surface defects ( fatigue cracks and
 

LOP at the surface).
 

2.0 	REFERENCES
 

2.1 	Uresco Corporation Data Sheet No. PN-100
 

2.2 	Nondestructive Testing Training Handbooks P1-4-2, Liquid Penetrant
 

Testing, General Dynamics Corporation, 1967.
 

2.3 	Nondestructive Testing Handbook, McMasters Ronald Press, 1959,
 

Volume I, Sections 6, 7 and 8.
 

3.0 	 EQUIPMENT
 

3.1 	Uresco P-149 High Sensitive Fluorescent Penetrant
 

3.2 	Uresco K-410 Spray Remover
 

3.3 	Uresco D499C Spray Developer
 

3.4 	Cheese Cloth
 

3.5 	Ultraviolet light source (Magnaflux Black-Ray BTl00 with General
 

Electric H-100, FT4, Projector flood lamp and Magnaflux 3901 filter.
 

3.6 	Quarter inch paint brush
 

3.7 	Isopropyl Alcohol
 

3.8 	Rubber Gloves
 

3.9 	Ultrasonic Cleaner (Sonogen Ultrasonic Generator, Mod. G1000)
 

3.10 	Light Meter, Weston Model 703, Type 3A
 

4.0 	 PERSONNEL
 

4.1 	The liquid penetrant inspection shall be performed by technically
 

qualified personnel.
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5.0 	 PROCEDURE
 

541 	Clean panels to be penetrant inspected by inmmersing in
 

isopropyl alcohol in the ultrasonic cleaner and running
 

for 1 hour; stack on tray and air dry.
 

5.2 	 Lay panels flat on work bench and apply P-149 penetrant
 

using a brush to the areas to be inspected. Allow a dwell
 

time of 30 minutes.
 

5.3 	 Turn on the ultraviolet light and allow a warm up of 15 minutes.
 

5.3.1 	Measure the intensity of the ultraviolet light and assure
 

a minimum reading of 125 foot candles at 15" from the 

2 )filter. (or 1020--micro watts per cm


5.4 	After the 30 minute penetrant dwell time, remove the excess
 

penetrant remaining on the panel as follows:
 

5.4.1 	With dry cheese cloth, remove as much penetrant as
 

possible from the surfaces of the panel.
 

5.4.2 	With cheese cloth, dampened with K-410, remover wipe remainder
 

of surface penetrant from the panel.
 

5.4.3 	Inspect the panel under ultraviolet light. If surface
 

penetrant remains on the panel, repeat step 5.4.2.
 

NOTE: The check for cleanliness shall be done in a
 

dark room with no more than two foot candles
 

of white ambient light.
 

5.5 	 Spray developer D-499c on the panels by spraying from the
 

pressurized container. Hold the container 6 to 12 inches
 

from the area to be inspected. Apply the developer in a
 

light, thin coat sufficient to provide a continuous film
 

on the surface to be inspected.
 

NOTE: A heavy coat of developer may mask possible defects.
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5.6 After the 30 minute bleed out time, inspect the panels for 

cracks under black light. This inspection will again be 

done in a dark room. 

5.7 On data sheet record the location of the crack giving "r" 

dimension to center of fault and the length of the cracks. 

Also record location as to near, center or far as applicable. 

See paragraph 5.8. 

5.8 Panel orientation and dimensioning of the cracks. 

RC-tchifle- Poles U... .j"--U?0 

'I 

k . X---.­

-

. .e__=8= eld .. £ r arels. 

5.9 After read out is completed repeat paragraph 5.1 and
 

turn off ultraviolet light.
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-APPENDIX B-


ULTRASONIC INSPECTION FOR "TIGHT FLAW DETECTION BY NDT" PROGRAM - INTEGRALLY 

STIFFENED PANELS
 

1.0 	 SCOPE
 

1.1 	 This procedure covers ultrasonic inspection of stringer panels
 

for detecting fatigue cracks located in the radius root of the
 

web and oriented in the plane of the web.
 

2.0 	REFERENCES
 

2.1 	Manufacturer's instruction manual for the UM-715 Reflectoscope
 

instrument.
 

2.2 	Nondestructive Testing Training Handbook, P1-4-4, Volumes I, II
 

and III, Ultrasonic Testing, General Dynamics, 1967.
 

2.3 	Nondestructive Testing Handbook, McMasters, Ronald Press, 1959,
 

Volume II, Sections 43-48.
 

3.0 	 EQUIPMENT
 

3.1 	UM-715 Reflectoscope, Automation Industries
 

3.2 	ION Pulser/Receiver, Automation Industries
 

3.3 	E-550 Transigate, Automation Industries
 

3.4 	SIJ-385, .25 inch diameter, flat, 10.0 MHz Transducer; Automation
 

Industries
 

3.5 	 SR 150 Budd, Ultrasonic Bridge
 

-.6 319 DA Alden, Recorder
 

3.7 	Reference Panel - Panel #1 (Stringer)
 

3.8 	Attenuator, Arenberg Ultrasonic Labs (0 db to 122 db)
 

4.0 	PERSONNEL
 

4.1 	The ultrasonic inspection shall be performed only by technically
 

qualified personnel.
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5.0 	 PROCEDURE
 

5.1 	Set up equipment per set up sheet, page 3.
 

5.2 	Submerge the stringer reference pane. in a water filled inspection
 

tank. (panel 1). Place the panel so the bridge indexes away from
 

the 	reference hole.
 

5.2.1 	Scan the web root area "B" to produce an ultrasonic "C" scan
 

recording of this area (see panel layout on page 4),,
 

5.2.2 	Compare this "C" scan recording, web root area "B", with the
 

reference recording of the same area (see page 5). If the
 

comparison is favorable, precede with paragraph 5.3.
 

5.2.3 	If the comparison is not favorable, adjust the sensitivity
 

control as necessary until a favorable recording is obtained.
 

5.3 	 Submerge, scan and record the stringer panels two at a time;
 

Place the stringers face up.
 

5.3.1 Scan and record areas in the following order: "C", "A", 

"B" and 	 "D". 

5.3.2 	 Identify on the ultrasonic "C" scan recording each web
 

root area and corresponding panel tag number.
 

5.3.3 	 On completion of the inspection or at the end of the.day,
 

whichever occurs first, rescan the web root area of the
 

stringer panel 1 and compare with reference recording.
 

5.4 	When removing panels from water, thoroughly dry each panel.
 

5.5 	Complete the data sheet for each panel inspected. (If no defects
 

are 	noted, so indicate on the data sheet.)
 

5.5.1 	The "X" dimension is measured from right to left for web 

root areas "C" and "A", and from left to right for web 

root areas "B" and "D". Use the extreme edge of the 

stringer indication for zero reference.
 

NOTE: Use decimal notation for all measurements.
 

5.6 	After completing the Data Sheeti roll up ultrasonic recording
 

and on the outside of the roll record the following information:
 

a) Date
 

b) Name (your)
 

c) Panel Type (stringer, weld, LOP)
 

d) Inspection name (ultrasonic, eddy current, etc.)
 

e) 	Sequence nomenclature (before chemical etch, after chemical
 

etch, after proof test, etc.).
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ULTRASONIC SET-UP SHEET
 

DATE: 02/12/74 

METHOD: Pulse/Echo @ 18 incident angle in water 

OPERATOR: Todd and Rathke 

INSTRUMENT: UM 715 Reflectoscope with ION Pulser/Receiver or see attached
set-up sheet tor UFD-I.
 

PULSE LENGTH: Min.
 

PULSE TUNING: For Max. signal
 

REJECT:
 

SENSITIVITY: 2.0 X 10.0 (Note: Insert 6 db into attenuator and
 
adjust the sensitivity control to obtain
 
a 1.8" reflected signal from the class I
 
defect in web root area "B" of panel 1.
 
(See Figure 1.) Take 6db out of system
 
before scanning the panels.
 

FREQUENCY: 10 MHz
 

GATE START: 4 E
 

GATE LENGTH: 2 ( 

TRANSDUCER: -SIJ 385; .25/10.0; S/N 24061
 

WATER PATH: 1 1/4" when transducer was normal to surface
 

WRITE LEVEL: + Auto Reset 8 SYNC: Main Pulse
 

PART: Integrally Stiffened Fatigue Crack Panels
 

SET-UP GEOMETRY.J
 

I180 Bridge Controls
 

Carriage Speed .033
 
Index

Ine.
Scan Direction 
 Rate .015 to .20
 

Step Increment .032
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LAY-OUT SHEET
 

Reference
 

J
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REFERENCE RECORDING SHEET
 

Case
 
I
 

Defect
 

WEB ROOT AREA
 

"B" 

Panel .. B-5 



FIGURE 1: Scope Presentation for the
 

Adjusted"Sensitivity to 1.98".
 

ORIGINAL PAGE IS 
OF POOR QUALITY 
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-APPENDIX C -

EDDY CURRENT INSPECTION AND RECORDING FOR INTEGRALLY STIFFENED 

ALUMINUM PANELS. 

1.0 	 SCOPE
 

1.1 This procedure covers eddy current inspection for detecting
 

fatigue'cracks in integrally stiffened aluminum panels.
 
"2.0 
 REFERENCES
 

2.1 Manufacturer's instruction manual for the NDT Instruments
 

I Model Vector 111 Eddy Current Instrument.
 

2.2 	Nondestructive Testing Training Handbooks, Pi-4-5 Volumes I & II,
 

Eddy Current Testing, General Dynamics, 1967.
 

2.3 	 Nondestructive Testing Handbook, McMasters, Ronald Press, 1959,
 

Volume II, Sections 35-41.
 

3.0 	EQUIPMENT
 

3.1 	 NDT Instruments Vector IlI Eddy Current Instrument.
 

3.1.1 100KHz Probe for 
Vector 111, Core diameter 0.063 inch.
 

NOTE: This is a single core, helically wound coil.
 

3.2 	NDE Integrally Stiffened Reference Panel #4, web B.
 

3.3 	 SR 150 Budd, Ultrasonic Bridge.
 

3.4 	 319DA Alden, Recorder.
 

3.5 	 Special Probe Scanning Fixture #2.
 

3.6 	Special Eddy Current Recorder Controller Circuit.
 

3.7 	 Dual DC Power Supply; 0-25V, O-2A (HP Model 6227B).
 

4.0 	PROCEDURE
 

4.1 
 Connect 100 KHz Probe to Vector ill instrument.
 

4.2 	Turn instrument power on and set sensitivity course control
 

to position 1.
 

4.3 	Check batteries by operating power switch to BAT position.
 

Batteries should be checked every two hours of use.
 

4.3.1 Meter should read above 70.
 

4.4 	Connect Recorder controller circuit
 

4.4.1 Set Power Supply for +16 volts and -16 volts.
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4.5 	Place Fluorolin tape on vertical and horizontal (2 places)
 

tracking surfaces of scanning block. Trim tape to allow
 

probe penetration.
 

4.5.1 	Replace tape as needed.
 

4.6 	 Set up panel scanning support fixture spacers and shims for
 

a two panel inspection, inner stringer faces.
 

4.7 	 Place the reference panel (#4, web B, Case 1, crack) and one other
 

panel in support fixture for B stringer scan. Align panels care­

fully for parallelism with scan path. Secure panels in position
 

with weights or clamps.
 

4.8 	Manually place scan probe along the reference panel stringer
 

face at least one inch from the panel edge.
 

4.8.1 	Adjust for vector III meter null indication by
 

alternately using X and R controls with the sensitivity
 

control set at 1. 4Use Scale control to maintain
 

readings on scale.
 

4.8.2 	Alternately increase the course sensitivity control
 

and continue to null the meter until a sensitivity
 

level of 8 is reached with fine sensitivity control
 

at 5. Note the final indications on X and R controls.
 

4.8.3 	Repeat steps 4.8.1 and 4.8.2 while a thin non-metallic
 

shim (3 mils thickness) is placed between the panel
 

horizontal surface and the probe block. Again note the
 

X and R values.
 

4.8.4 	Set the X and R controls to preliminary lift-off
 

compensation values based on data of steps 4.8.2 and 4.8.3.
 

4.8.5 	Check the meter indications with and without the shim
 

in place. Adjust the X and R controls until the
 

meter indication is the same for both conditions of
 

shim placement. Record the final settings:
 

"X" 160.0 These are approximate settings and are
 

;'R" 319.5 given here for reference purposes only.
 

SENSTTIVTTY:
 

COURSE 8
 

FINE 5
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4.9 	 Set the Recorder controls for scanning as follows:
 

Index Step Increment .020
 

Carriage Speed .029
 

Scan Limits set to scan 1 inch beyond panel edge.
 

Bridge OFF and bridge mechanically clamped.
 

4.10 	Manually move the probe over panel inspection region to
 

determine scan background level. Adjust the Vector III
 

Scale control to set the background level as close as possible
 

to the Recorder Controller switching point (meter indication
 

is 20 for positive-going indication and 22 for negative-going
 

indication).
 

4.11 	Initiate the Recorder Scan function.
 

4.12 	Verify that the flaw in "B" stringer of the reference pinel
 

is clearly displayed in the recording. Repeat step 4.10
 

if requited.
 

4.13 	Repeat step 4.10 and 4.11 for the second panel in the fixture.
 

Annotate recordings with panel/stringer identification.
 

4.14 	Reverse the two panels in the support fixture to scan the
 

"C" stringer. Repeat steps 4.7, 4.101, 4.11, 4.13, and 4.14
 

for the remaining panels.
 

4.15 	Set up panel scanning support fixture, spacers and shims for
 

outer stringer faces. Relocate scan bridge as required and
 

clamp.
 

4.16 	Repeat steps 4.7, 4.10, 4.11, 4.13, and 4.14 for all panels
 

for A and D stringer inspections.
 

4.17 	Evaluate recordings for flaws and enter panel, stringer,
 

flaw location and length on applicable data sheet. Observe
 

correct orientation of reference edge of each panel when
 

measuring location of a flaw.
 

5.0 	PERSONNEL
 

5.1 	 Only qualified personnel shall perform inspections.
 

6.0 	 SAFETY
 

6.1 	Operation should be in accordance with Standard Safety Procedure
 

used in operating any electrical device.
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AMENDMENT A
 

APPENDIX C
 

NOTE
 

This amendment covers changes
 

in procedure from raster
 

recording to analog recording.
 

4.4.2 	Connect Autoscaler circuit to Vector III and set
 

ba'6k panel switch to AUTO.
 

4.8 	 Initiate the Recorder Scan function. Set the Autoscaler
 

switch to RESET.
 

4.9 	 Adjust the Vector 1il Scale control to set the recorder display
 

for no flaw or surface noise indications.
 

4.10. 	Set the Autoscaler switch to RUN.
 

4.11 	When all of the signatures of the panels are indicated (all
 

white display), stop the recorder. Use the carriage Scan
 

switch on the Recorder Control Panel to stop scan.
 

4.12 	Annotate recordings with panel/side/thickness/reference
 

edge identification data.
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-APPENDIX D-


X-RADIOGRAPHIC INSPECTION PROCEDURES FOR DETECTION OF FATIGUE CRACKS
 

AND LOP IN WELDED PANELS
 

1.0 	SCOPE
 

To establish a radiographic technique to detect fatigue cracks and LOP in
 
welded panels.
 

2.0 	REFERENCES
 

2.1 	MIL-STD-453.
 

3.0 	EQUIPMENT AND MATERIALS
 

3.1 Norelco X-ray machine 150 KV, 24MA.
 

3.2- Balteau X-ray machine, 50 KV, 20MA.
 

3.3 	Kodak Industrial Automatic Processor Model M3.
 

3.4 	MacBeth Quantalog Transmission Densitometer, Model TD-100A.
 

3.5 	Viewer, High Intensity, GE Model BY-Type 1 or equivalent.
 

3.6 	Penetrameters - in accordance with MIL-STD-453.
 

3.7 	Magnifiers, 5X and LOX pocket comparator or equivalent.
 

3.8 	Lead numbers, lead tape and accessories.
 

4.0 	PERSONNEL
 

Personnel performing radiographic inspection shall be qualified in accord­
ance with MIL-STD-453.
 

5.0 	PROCEDURE
 

5.1 	An optimum and reasonable production technique using Kodak, Type M
 
Industrial X-ray film shall be used to perform the radiography of
 
welded panels. The rationale for this technique is based on the re­
sults as demonstrated by the radiographs and techniques employed on
 
the actual panels.
 

5.2 	Refer to Table I to determine the correct setup data necessary to
 
produce the proper exposure except:
 

Paragraph (h) Radiographic Density shall be: 2.5 to'3.5
 

Paragraph (i) Focal Spot size shall be: 2.5 mm
 

Collimation 1-1/8" diameter lead diaphram at the tube head.
 



5.3 	 Place the film in direct contact with the surface of the panel
 
being radiographed.
 

5.4 	Prepare and place the required film identification on the film and
 
panel
 

5.5 	 The appropriate penetrameter (MIL-STD-453) shall be radiographed
 
with each panel for the duration of the exposure.
 

5.6 	 The penetrameters shall be placed on the source side of the panels.
 

5.7 	 The radiographic density of the panel shall not vary more than +
 
15 percent from the density at the MIL-STD-453 penetrameter
 
location.
 

5.8 	Align the direction of the central beam of radiation perpendicular
 
and to the center of the panel being radiographed.
 

5.9 	 Expose the film at the selected technique obtained from Table 1.
 

5.10 	Process the exposed film through the Automatic Processor (Table I).
 

5.11 	 The radiographs shall be free from blemishes or film defects which
 
may mask defects or cause confusion in the interpretation of the
 
radiograph for fatigue cracks.
 

5.12 	 The density of the radiographs shall be checked with a densitometer
 
(Ref. 3.3) and shall be within a range of 2.5 to 3.5 as measured
 
over the machined area of the panel.
 

5.13 	Using a viewer with proper illumination (Ref. 3.4) and magnification
 
(5X and 1OX Pocket Comparator or equivalent) interpret the radio­

graphs to determine the number, location, and length of fatigue
 
cracks in each panel radiographed.
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TABLE 	 I 

DETECTION OF LOP - X-RAY 

Type of Film: EastmanjKodak Type M 

Exposure Parameters: Optimum Technique
 

(a) Kilovoltage:
 

.130 - 45 KV
 

.205 - 45 KV
 

.500 - 70 KV
 

(b) Milliamperes:
 

.130-.205 - 20 MA
 

.500 - 20 MA
 

(c) Exposure Time:
 

.130-.145 - 1 Minutes 

.146-.160 - 2 Minutes 

.161-.180 - 2 Minutes. 

.181-.190 - 2 Minutes 

.190-.205 - 3 Minutes
 

.500 - 2 Minutes
 

(d) 	Target/Film Distance:
 

48 Inches
 

(e) 	Geometry or Exposure:
 

Perpendicular
 

(f) 	Film Holders/Screens:
 

Ready Pack/No Screens
 

(g) Development Parameters:
 

Kodak Model M3 Automatic Processor
 
Development Temperature of 78°F
 

(h) Radiographic Density:
 

.130 -	 3.0 

.205 -	 3.0 

.500 -	 3.0 
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TABLE 	1 (Continued) 

(i) Other Pertinent Parameters/Remarks: 

Radiographic Equipment 
Norelco 150 KV 24 MA 
Beryllium Window
 

.7 and 2.5 Focal Spot
 

WELD CRACKS 

Exposure Parameters: Optimum Technique
 

(a) Kilovoltage:
 

1/8" - 45 KV 
1/2 " - 70 KV 

(b) Milliamperes:
 

1/8" - 20 MA 
1/2" - 20 MA 

(c) Exposure Time:
 

1/8" - 1 Minutes 
1/2" - 2k Minutes 

(d) 	Target/Film Distance:
 

48 Inches
 

(e) 	Geometry or Exposure:
 

Perpendicular
 

(f) 	Film Holders/Screens:
 

Ready Pack/No Screens
 

(g) Development Parameters:
 

Kodak Model M3 Automatic Processor
 
Development Temperature at 780F
 

(h) Radiographic Density:
 

.060 - 3.0 

.205 - 3.0 

i) Other Pertinent Parameters/Remarks:
 

Radiographic Equipment

Norelco 150 KV 24 MA
 

Beryllium Window
 
.7 and 2.5 Foenl Snnt
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APPENDIX E
 

ULTRASONIC INSPECTION FOR "TIGHT FLAWS DETECTION BY NDT" PROGRAM -

L.O.P. PANELS
 

1.0 	SCOPE
 

1.1 	 This procedure covers ultrasonic inspection of LOP panels
 
for detecting lack of penetration and subsurface defects
 
in Weld area.
 

2.0 	REFERENCE
 

2.1 	Manufacturer's instruction manual for the UM-715 Reflectoscope
 
instrument, and Sonatest UFD I instrument.
 

2.2 	Nondestructive Testing Training Handbook, P1-4-4, Volumes I, II
 
and III, Ultrasonic Testing, General Dynamics, 1967.
 

2.3 	 Nondestructive Testing Handbook McMasters, Ronald Press, 1959,
 
Volume II, Sections 43-48.
 

3.0 	EQUIPMENT
 

3.1 	UM-715 Reflectoscope, Automation Industries
 

3.2 	 ION Pulser/Receiver, Automation Industries
 

3.3 	E-550 Transigate, Automation Industries
 

34 	SIJ-360 .25 inch diameter, flat, 5.0 MHZ Transducer Automation Ind.
 
SIL-57A2772 .312 inch diameter, flat 5.0 MHZ Transducer Automation Ind.
 

3.5 	 SR 150 Budd, Ultrasonic Bridge
 

3.6 	 319 DA Alden, Recorder
 

3.7 	Reference Panels. Panels #24 & 36 for 1/8" Panels and #42 and #109
 
for 1/2 inch panels.,
 

4.0 	PERSONNEL
 

4.1 	The ultrasonic inspection shall be performed only by technically
 
qualified personnel.
 

5.0 	 PROCEDURE
 

5.1 	Set up equipment per applicable setup sheet. (page 4)
 

5.2 	 Submerge the applicable reference panel for the thickness being
 
inspected. Place the panel so the least panel conture is on
 

the bottom.
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5.2.1 	Scan the weld area to produce an ultrasonic "C" scan
 
recording of this area. (See panel layouts on page 4).
 

5.2.2 	 Compare this "C" scan recording with the referenced
 
recording of the same panel (See page 5 and 6). If
 
the comparison is favorable, presede with paragraph 5.3.
 

5.2.3 	 If comparison is not favorable, adjust the controls
 
as necessary until a favorable recording is obtained.
 

5.3 	 Submerge, scan and record the panels two at a time. Place
 
the panels so the least panel conture is on the bottom.
 

5.3.1 	 Identify on the ultrasonic "C" scan recording the
 
panel number and reference hole orientation.
 

5.3.2 	 On completion of the inspection or at the end of shift,
 
whichever occurs first, rescan the reference panel and
 
compare with reference recording.
 

5.4 	When removing panels from water, thoroughly dry each panel.
 

5.5 	 Complete the data sheet for each panel inspected.
 

5.5.1 	The "x" dimension is measured from end of weld, starting
 
zero at end with reference hole. (Use decimal notation
 
for all measurements).
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5.6 After completing the data sheet, roll up ultrasonic
 

recording and on the outside of the roll record the
 

following information.
 

A - Date
 

B - Name of Operator
 

C - Panel Type
 

D - Inspection Name
 

E - Sequence Nomenclature
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Date. Oct. 1, 1974 

2i]ethod- Pitch And Catch Stcep delay 

Operator- H. Loviscne Sweep 
Max. 

Instrument- UK-715 ReflectoscoDe ION Pnlser/Receiver. -Q 

1/8H 1/2" 1 
Pulse Length- - Q Mine - Q Hin. 0-1 

Pulse Tuning- - (b- -

Reject-- - - - 10' 1Clock- - -b 12 O'Clock 

Sensitivity- 5 X 1 3.1 X 10 

Frequency- M 5 PMZ1HZ 

Gate Start- 4 -4 

Gate Length- - - - 3 - 3 

Transducer- Transmitter- SlI 5o0 S/I 3000 
- Receiver- SIL 5.0 SI 15926 

Water Path- 2-11/16" 

Write Level -- -A- - -

Part - 1/8" & 1/2" L.O.P. Panels 

Sct- p Geometry -

1/8"T (280) 

1/2"T(23 ° ) 

*.- 230, 

RA DTh~)3:01iD hD)j -

Step Stepmarker },il.marker
arker er / Transmitter 

Ref. Hole+--> . 
I ref. 

hole-

S 
Reciever 

49) 

Use a N/G transducer to hold bracket -­ ,­

15/16" 
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-

==
 

t -6 .......
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AIENDIbNT A 

APPEMDIX E 

SET-UP FOR 1/8" LOP PANELS 

DATE: 	 08/11/75
 

METHOD: 	 Pitch-Catch, Pulse-echo @ 27 3/40 incident angle 

of transmitter and receiver in water (angle indicator 
4 3/40)
 

OPERATOR: 	 Steve Mullen
 

INSTRUMENT: UM 715 Reflectoscope with 10 N/Pulser/Receiver 

PULSE LENGTH:(2) Min. 

Q
PULSE TUNING: 	 for Max signal 

REJECT: 110:00 o'clock
 

SENSITIVITY: 5 x 10
 

FREQUENCY: 5 MHz
 

GATE START: 	 4 

GATE LENGTH: 	 3
 

TRANSDUCER: 	 Tx-SIZ-5; S/N 26963; RX-SIZ-5, S/N 35521
 

WATER PATH: 	 1.9" from Transducer Housing to part
 
Transducer inserted into housing completely
 

WRITE LEVEL: Reset e + auto 

PART: 1/8" LOP Panels for NAS 9-13578 

SET-UP GEOMETRY: 

SCANJ 

STEP 

ER-.7
 



Ys" LOP WeF Pc -sEs 
kUMMI-7,Z1-T A 

APPEMDIX E 

LOP OEF"PkvSL- -d5-. 
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AI EM, ENT B 

APPENDIX E 

SET UP FOR 1/2" LOP PANELS 

DATE: 	 08/12/75
 

METHOD: 	 Pitch-Catch, Pulse-Echo @ 270 incident angle of 
Transmitter and Receiver in Water (angle indicator = 40) 

OPERATOR: Steve Mullen
 

INSTRUMENT: UM-715 Reflectoscope with ION/Pulser/Receiver
 

PULSE LENGTH ( Min. 

PULSE TUNING: For Max signal 

REJECT:" 10:00 o'clock 

SENSITIVITY: 5 x 10 

FREQUENCY: 5 MHz
 

GATE START: 4 (D
 

GATE LENGTH: 3
 

TRANSDUCER: TX-SIZ-5; SN26963; Rx-SIZ-5, S/N 35521
 

WATER PATH: 1.6" from Transducer Housing to Part
 
Transducer inserted into housing completely
 

WRITE LEVEL: Reset D -- auto 

PART: 1/2" LOP Panels for NAS'9-13578 

SET-UP GEOMETRY:
 

t, 

49­
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AI&1fl>,TT B 

APPENDIX S 

1/2" LOP Reference Panels 

Drill Hole,..Reference Panel #19
 

LOP, Reference Panel #118 
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APPENDIX F
 

EDDY CURRENT INSPECTION AND RECORDING OF LACK OF PENETRATION (LOP) ALUMINUM 

PANELS, UNSCARFED CONDITION 

1.0 	 SCOPE
 

1.1 	This procedure covers eddy current inspection for detecting lack
 

of penetration flaws in welded aluminum panels.
 

2.0 	REFERENCES
 

2.1 Manufacturer's instruction manual for the NDT Instruments Model 

Vector 	 -11 Eddy Current Instrument. 

2.2 	Nondestructive Testing Training Handbooks P1-4-5, Volumes I and 11, 

Eddy Current Testing, General Dynamics, 1967. 

2.3 	Nondestructive Testing Handbook, McMasters, Ronald Press, 1959,
 

Volume II, Sections 35-41.
 

3.0 	 EQUIPMENT 

3.1 	 NDT Instruments Vector lll Eddy Current Instrument. 

3.1.1 	 20 KHz Probe for Vector 111, Core Diameter 0.250 inch. 

NOTE: This is a single core helically wound coil. 

3.2 	NDE LOP Reference Panels,
 

3.2.1 	1/2 inch panels Nos. 1 and 2.
 

3.2.2 1/8 inch panels Nos. 89 and 115.
 

3-3 SR 150 Budd, Ultrasonic Bridge.
 

3.4 	319DA Alden, Recorder.
 

3.5 	 Special Probe Scanning Fixture No. 1 for LOP Panels0
 

3.6 	 Special Eddy Current Recorder Controller Circuit.
 

3.7 	Dual DC Power Supply; 0-25V, 0-lA (Hp Model 6227B or equivalent). 

3.8 	 Special Autoscaler/Eddy Current Meter Circuit0
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4.0 	 PROCEDURE 

4.1 	Connect 20 KHz Probe to Vector lll instrument. 

4.2 	Turn instrument power on and set Sensitivity Course control to
 

position #1.
 

4.3 	Check batteris by operating power switch to-BAT position. (These
 

should be checked every two hours to use).
 

4.3.1 	Meter should read above 70.
 

4.4 	Connect Recorder Controller circuit
 

4.4.1 	 Set Power Supply for +16 volts and -16 volts. 

4.4.2 	Connect Autoscaler Circuit to Vector 111 and set back panel
 

switch to AUTO.
 

4.5 	 Set up weld panel scanning support fixture, shims and spacers as 

follows: 

4.5.1 	Clamp an end scan plate (of the same thickness as welded
 

panel) 	to the support fixture. Align the end scan plate
 

perpendicular to the path that the scan probe will travel
 

over 	the entire length of the weld' bead. Place two weld
 

panels 	side by side so that the weldbeads are aligned with
 

the 	scan probe. Secure the LOP panels with weights/clamps
 

as required. Verify that the scan probe holder is making
 

sufficient contact with the weld bead such that the scan
 

probe 	springs are unrestrained by limiting devices. Secure
 

an end scan plate at opposite end of LOP panels. Verify
 

that scan probe holder has sufficient clearance for scan
 

travel.
 

4.5.2 	Use shims or clamps to provide smooth scan probe transition
 

between weld panels and end scan plates0
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4.6 	Set Vector 111 controls as follows:
 

"X" 134.0
 

"R" 517.0 

Sensitivity, Course 8. Fine 5. 

4.7 Set the Recorder Controls for scanning as follows:
 

Index 	Step Increment - .020 inch.
 

Carriage Speed - 029
 

Scan Limits - set to scan 1± inches beyond the panel edges. 

Bridge - OFF and bridge mechanically clamped. 

4.8 Initiate the Recorder/Scan function. Set the Autoscaler switch
 

to RESET. Adjust the Vector 111 Scale control to set the recorder 

display for no flow or surface noise indications. 

4.9 Set the Autoscaler switch to RUN.
 

4.10 	When all of the signatures of the panels are indicated (white dis­

play) 	stop the Recorder. Use the Carriage Scan switch on the Re­

corder 	control panel to stop scan.
 

4.11 	Annotate recordings with panel/side/thickness/reference edge
 

identification data. 

4.12 	Repeat 4.5, 4.8, through 4.11 with panel sides reversed for back
 

side scan
 

4.13 	Evaluate recordings for flaws and enter panel, flaw location and
 

length on applicable data sheet. Observe correct orientation of
 

reference hole edge of each panel when measuring location of a flaw.
 

5.0 PERSONNB 

5.1 Only qualified personnel shall perform inspections. 

6.o SAFETY 

6.1 Operation should be in accordance with Standard Safety Procedure
 

used in operating any electrical device.
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APPE DIX G
 

EDDY CURRENT INSPECTION AND C-SCAN RECORDING OF LOP, ALUMIM
 

PANELS, SCARFED CONDITION 

1.0 	SCOPE
 

1.1 This procedure covers eddy current C-scan inspection detecting
 

LOP 	in Aluminum panels with scarfed welds.
 

2.0 	REFERENCES
 

2.1 	 Manufacturer's instruction manual for the NDT instruments
 

Model Vector 111 Eddy Current Instrument.
 

2.2 	Nondestructive Testing Training Handbooks, P1-4-5, Volumes
 

I and II, Eddy Current Testing, General Dynamics, 1967.
 

2.3 	Nondestructive Testing Handbook, MeMasters, Ronald Press,
 

1959, Volume II, Sections 35-41.
 

3.0 	EQUIPMENT
 

3.1 	 M Instruments Vector 111 Eddy Current Instrument.
 

3.1.1 	20 KHz probe for Vector 111, Core diamter 0.250 inch
 

Note: This is a single core helically wound coil.
 

3.2 	 SR 150 Budd, Ultrasonic Bridge.
 

3.3 	 319DA Alden, Recorder.
 

3.4 	 Special Probe Scanning Fixture for Weld Panels. (A).
 

3.5 	 Dual DC Power Supply; 0-25V, 0-lA (HP Model 6227B or equivalent).
 

3.6 	 DE reference panel no. 4, LOP reference panels no. 20(1") and
 

No. 36(1/8").
 

3.7 	 Special Eddy Current Recorder Controller circuit.
 

G-1 



4.0 	 PROCEDURE
 

4.1 	 Connect 20 KHz probe to Vector 111 instrument.
 

4.2 	 Turn instrument power on and set SENSITIVITY COURSE control
 

to position lo
 

4.3 	Check batteries by operating power switch to BAT position. Batteries
 

should be checked every two hours of use. Meter should read above 70.
 

4.4 	Connect C-scan/Recorder Controller Circuit
 

4.4.1 	Set Power Supply for +16 volts and -16 volts.
 

4.4.2 Set "/s E/C sivtch to E/C.
 

4.4°3 Set OP AMP switch to OPR.
 

4.4.4 	 Set RUN/RESET switch to RESET.
 

4.5 	 Set up weld panel scanning support fixture as follows:
 

4o5.1 	Clamp an end scan plate of the same thickness as the weld
 

panel to the support fixture. One weld panel will be
 

scanned at a time.
 

4.5.2 	Align the end scan plate, using one weld panel so that
 

the scan probe will be centered over the entire length
 

of the weld bead.
 

4.5.3 	Use shims or clamps to provide smooth scan transition
 

between weld panel and end plates.
 

4.5.4 	 Verify that scan probe is making sufficient contact with
 

panel.
 

4.5.5 	 Secure the weld panel with weights or clamps as required.
 

4.5.6 	Secure an end scan plate at opposite end of weld panel.
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4.6 	Set Vector III controls as follows:
 

'X" 050.0
 

"R" 424.0
 

SENSITIVITY, COURSE 8, FINE 4.
 

MANUAL/AUTO switch to MAN.
 

4.7 	Set the Recorder controls for scanning as follows:
 

Index Step Increment - .020 inch
 

Carriage Speed -.029
 

Scan Limits - set to scan l inches beyond the panel edge.
 

Bridge ­

4.8 	Manually position the scan probe over the center of the weld.
 

4.9 	Manually scan the panel to locate an area of the weld that con­

tains no flaws (decrease in meter reading).
 

With the probe at this location, adjust the Vector 111 Scale con­

trol to obtain a meter indication of 10 (meter indication for
 

switching point is 25)o
 

4.10 	Set Bridge switch to OFF and locate probe just off the edge of
 

the weld.
 

4.11 	Set the Bridge switch to BRIDGE.
 

4.12 	Initiate the Recorder/Scan function.
 

4.13 	Annotate recordings with panel reference edge and serial number
 

data.
 

4.14 	Evaluate recordings for flaws and enter panel, flaw location and
 

length data on applicable data sheet. Observe correct orientation
 

of reference hold edge of each panel when measuring location of
 

flaws.
 

5.0 	PERSONNEL
 

5.1 	only qualified personnel shall perform inspection
 



6.0 	 SAFETY 

6.i 	Operation should be in accordance with Standard Safety Procedure
 

used in operating any electrical device0
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APPENDIX H
 

ULTRASONIC INSPECTION FOR "TIGHT FLAWS DETECTED BY NDT" PROGRAM -

WELD PANELS HAVING CROWNS ­

1.0 	 SCOPE
 

1.1 This procedure covers ultrasonic inspection of weld panels
 

for detecting fatigue cracks located in the Weld area.
 

2.0 	 REFERENCES
 

2.1 	Manufacturer's instruction manual for the UM-715 Reflectoscope
 

instrument.
 

2.2 	Nondestructive Testing Training Handbook, P1-4-4, Volumes I, II
 

and III, Ultrasonic Testing, General Dynamics, 1967.
 

2.3 	 Nondestructive Testing Handbook, McMasters, Ronald Press, 1959,"
 

Volume II, Sections 43-48.
 

3.0 	EQUIPMENT
 

3.1 	UM-715 Reflectoscope, Automation Industries
 

3.2 	 iON Pulser/Receiver, Automation Industries
 

3.3 	E-550 Transigate, Automation Industries
 

3.4 	UFD-l Sonatest, Baltue
 

3.5 	 SIJ-385; .25 inch diameter, flat, 10.0 MHz Transducer; Automation
 

Industries.
 

3.6 	 SR 150 Budd, Ultrasonic Bridge
 

3.7 	319 DA Alden, Recorder
 

3.8 	 Reference Panels -
For thin panels use #8 for transverse
 

cracks and #26 for longitudinal cracks. For thick panels use
 

#36 for transverse carcks and #41 for longitudinal cracks.
 

4.0 	PERSONNEL
 

4.1 	 The ultrasonic inspection shall be performed only by technically
 

qualified personnel.
 



5.0 PROCEDURE
 

5.1 get 	up equipment per setup sheet on page 3.
 

5.1.1 	Submerge panels. Place the reference panels, (for the
 

material thickness and orientation to be inspected)
 

so the bridge indices toward the reference hole.
 

Produce a "C" scan recording and compare with the
 

reference 	recording.
 

5.1.1.1 	If the comparison is not favorable, adjust the
 

controls as necessary until a favorable recording
 

is obtained,
 

Submerge, scan the weld area and record in both the longitudinal
5.2 


and transverse.directions. Complete one direction then change
 

bridge controls and complete the other direction (see page 3 & 4).
 

5.2.1 	Identify on the recording the starting edge of the panel,
 

location of Ref. hole and direction of scanning with
 

respect to the weld. (Longitudinal or transverse)
 

5.3 On completion of the inspection or at the end of shift, which­

ever occurs first, rescan the reference panel, (for the orientation
 

and thickness in progress); and compare recordings.
 

5.3.1 	When removing panels from water, thoroughly dry each panel.
 

5.4 Complete the data sheet for each panel inspected.
 

5.4.1 	The "X" dimension is measured from the edge of panel.
 

Zero designation is the edge with the reference hole.
 

5.5 After completing the data sheet, roll up recordings, and on
 

the outside of roll record the following information:
 

A. Date
 

B. Name 	of Operator
 

C. Panel 	Type (stringer, weld, LOP, etc.)
 

D. Inspection Name'(U.S., E/C, etc.)
 

* -.2 E. Sequence Nomenclature
 



5BTRAS0NIC SET-P91 SHET Page 3 

PATE: O/16/74 

TIOD: ~iese/eho @ 32a incident angle in water 

OPERATOR: Lovisone. 

ISTRII)ENT Um 715 Refectoscope with iON plser/Receivero
 

PLSE LENGTH: -& Mit.
 

PULSE TnING: -&For max. Signal,.
 

O!Clock.
REJECT : &Three 

S99SIPIVITY: Using the ultrasonic fat crack Cal. Std. panel 
add shims -or corree thickness of' panels to be 
inspected. Alig. transducer o small hol of the 
St&. anA adjtist sensitivity to obtain a signal 
of 1.6.inches for transverse and O.4 inches for 

longitudal. 

FRMUI4 CV: 10 -MHZ. 

GATE START: -04
 

GATE LEIGTH: 2
 

TRAMSDUCEP: Srd 365 .25/lO.0 SAJ 2h061.
 
0 

1.7" measured P 32 tilt, center of transducer
WAVER PATH: 
to top of panel. 

1RITE LEVEL: ( Auto Reset, 

PART: PATDIUE crack weld p anels with crown. 

BRIDGE CONTROLS: Carriage Speed 0.30 , Step Increment 0.30. 

SET-UP GEOMTRr: 

(--SCAN-->, 

STEP5TEP 

v-se
Longitudal Tr 
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~-T I ip\TCQn4J n1 iR i -

Xilk 

-
X1 

E Sf IWIINT2
 

A+6s
 

Q©A 
A-80 Ol 

DELAY 

x'o 

USP RNGATE A .Tr 

D)lELAYGATE 

t.F I SWEEP RAM~EGAIN AUX. GAIN 

~ 01£L.f [ TFRE!~~ :Ji:TI)PIOIN.E~~tDm H/ 

10 

IOFF 

(WV PRflBL DELAY C) PR
FRE4?, l(J) r 
R1-4' QOU X)IhI) SINLE T 



PANEL #8 FOR TRISVERSE 
WELD AREA. 

SCAN OF PANEL #36 FOR TRANSVEE 

LD AREA. 
SCAN OF 

DEFECT 4.4" FROM REFERENCE END. DEFECT 11.1" FROM REFERENCE END. 

REF. 
END. 

REF. 
END. 

ORIGINAL PAGE LS 

OF PooRQUALsr 



PANEL #26 REFERENCE RECORDING FOR LONGITUDAL SCAN OF WELD AREA. 

REFERENCE END. 

DEFECT MEASUREMENTS 1.9-- 3.7 

PANEL #41 REFERENCE RECORDING FOR LONGITUDAL SCAN OF WELD AREA. 

DEFECTS 
 2.95 1.4 
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£S2MEI-MNT A 

APPEUDIX H 

SET-UP FOR 1/8" WELDED FATIGUE CRACK PANELS 

DATE: 08/29/75
 

METHOD: Pitch-Catch, Pulse-Echo @ 27 1/2" Incident Angle
 
Angle Indicator + 4 1/20 

OPERATOR: Steve Mullen 

INSTRUMENT: UM 715 Reflectoscope with 16N/Pulser/Receiver 

PULSE LENGTH: Max 

PULSE TUNING: MAX Signal 

REJECT: , Weld with Crown * Flush Weld/J I 

SENSITIVITY: 10 x 10 

FREQUENCY: 15 MHZ 

GATE START: W/Croxqn Flush 

4 4 

GATE LENGTH: 3 z 3 ,t-

TRANSDUCER: Transmitter: 464-15 MHZ, S/N 6391, Flat 
Receiver: SIZ-15 MHz, S/N 10755, Flat 

WATER PATH: I" From Transducer Housing to Panel 

WRITE LEVEL: + Auto 

Reset 

PART: 1/8" Weld Panels
 

SET-UP GEOMETRY:
 

11-040H, 

F-:7
 



Ys -Leze.-~rL
 

WabrbM'EL 

pil ER­

2crKCath~~5bA 
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APPENDIX H 

SET-UP FOR 1/2", WELDED FATIGUE CRACK PANELS 

DATE: 08/15/75
 

METHOD: Pitch-Catch, Pulse-Echo @ 21 1/20 incident angle for
 
long defect @ 180 incident angle for
 
transverse scan in water ,
 

Angle Indicator
 
Long = -2 1/20
 

Trans= -50
 

OPERATOR: Steve Mullen
 

INSTRUMENT: UM-715 Reflectoscope with ION/Pulser/Receiver
 

PULSE LENGTH: j - 3:00 o'clock 

PULSE TUNING: For Max Signal 

REJECT: 10:00 o'clock 

SENSITIVITY: 2 x 10 

FREQUENCY: 5 M4Hz 

GATE START: 4 

GATE LENGTH: 3 ,/ 

TRANSDUCER: TX-SIZ-5, S/N 26963, RX-SIZ-5, S/N 35521 

WATER PATH: 1.6" From Transducer Housing to the panel 

WRITE LEVEL: + Auto 
Reset 

PART: 1/2" Fatigue Crack Welded Panels 

SET-UP GEOMETRY: 1/2" Weld Panel 
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APPENDIX i 

ULTRASONIC INSPECTION FOR TIGHT FLAWS IN PANELS WITH FLUSH WELDS 

1.0 	 SCOPE 

1.1 	 This procedure covers ultrasonic inspection of weld panels with
 

flush 	welds. 

2.0 	 REFERENCES
 

2.1 	Manufacturer's instruction manual for the UM-715 Reflectoscope
 

instrument.
 

2.2 	Nondestructive Testing Training Handbook, PI-4-4, Volumes I, II
 

and III, Ultrasonic Testing, General Dynamics, 1967.
 

2.3 	 Nondestructive Testing Handbook, McMasters, Ronald Press, 1959,
 

Volume II, Section 43-48.
 

2.4 	Manufacturer's instruction manual for the Sonatest Flaw Detector, UFD 1.
 

3.0 	EQUIPMENT
 

3.1 	 UM-715 Reflectoscope, Automation Industries or Sonatest Flaw
 

Detector UFD-l with Recorder Interface.
 

3.2 	 ION Palser/Receiver, Automation Industries. (UM-715 only)
 

3.3 	 E-550 Transigate, Automation Industries. (UM-715 only)
 

3.4 	SIJ-385, .25 inch diameter, flat, 10.0 MHz Transducer:
 

Automation Industries.
 

3.5 	 SR 150 Budd, Ulatrasonic Bridge
 

3.6 	319 DA Alden, Recorder
 

3.7 	 Reference Panels - For thin panels use #15 and for thick panels
 

use #30.
 

4.0 	PERSONNEL
 

4.1 	The ultrasonic inspection shall be performed only by technically
 

qualified personnel.
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5.0 	PROCEDURE
 

5.1 	Set up equipment per setup sheet on page 3 for UM-715 Reflectoscope
 

or page 4 for Sonatest equipment.
 

5.1.1 	Submerge panels. Place the reference panels for the
 

thickness and orientation to be inspected so the bridge
 

steps away from the reference hole. Produce a C-scan
 

recording and compare with the reference recording.
 

5.1.2 	If the comparison is not favorable, adjust the controls
 

(excluding controls on the Pulser/Receiver unit) as
 

necessary until a favorable recording is obtained.
 

5.2 	 Submerge, scan the weld area and record in both the longitudinal
 

and transverse directions. Complete one direction then change
 

bridge controls and complete the other direction (see set up sheets).
 

5.3 	 Identify on the recording the starting edge of the panel,,
 

location of reference hole and direction of scanning with respect
 

to the weld (longitudinal or transverse).
 

5.4 	Upon completion of Lhe inspection or at the end of the shift,
 

whichever occurs first, rescan the reference panel and compare
 

to the reference recording.
 

NOTE
 

Dry each panel thoroughly after removing from
 
water.
 

5.5 	 Complete the data sheet for each panel inspected.
 

5.5.1 	The "" dimension is measured from the edge of the panel.
 

Zero designation is the edge with the reference hole.
 

5.6 	After completing the data sheet, roll up recordings, and on the
 

outside of roll record the following information:
 

A. 	Date
 

B. Name of Operator
 

C. 	Panel type (Flush weld)
 

D. 	Inspection Name (UIS)
 

E. 	Inspection Sequence
7.-.' 



Ultrasonic setup sheet for . 3 
UM-715 Reflectoscope. 

DATE: :07-16-74
 

METHOD: 	 Pulse/Echc@ 320/
 

Lovisone
OPERATOR: 


UM-715 Reflectoscop
INSTRUMENT: 


PULSER/RECEIVER UNIT 

PULSE LENGTH: Q 4Min. 

PULSE TUNING: Q For Max. sig. 5 f 5l *f 
REJECT: n Ten O'Clock 

FREQUENCY: 10 MHz " ____ _ 

SENSITIVITY: Using the .-5 he. i Rcv. -

Ultrasonic Fat. 

crack Cal. Std. 

panel, add shims 	for correct thickness of panels
 

to be inspected. Align transducer on small hole
 

of the Std Panel and adjust sensitivity to obtain
 

a signal of 1.6 inches for transverse scan and 0.4
 

inches for longitudal scan. (Sensitivity adjustment
 

made with gate turned OFF).
 

TRANSIGATE UNIT
 

GATE START: 46 4
 

GATE LENGTH: 22
 

WRITE LEVEL: Auto Reset +
 

SYNC: Main Pulse
 

TRANSDUCER: SIJ 385 .25/10.0 S/N 24061
 

WATER PATH: 1.7" measured @ 32 tilt, center of transducer to panel.
 

BRIDGE CONTROLS: 	Carriage Speed 0.30, Step Increment 0.30
 

PART TYPE: 	 Fatigue crack weld panels with crown and flush welds,
 

1/8" and 1/2" thickness.
 
SET-UP GEOMETRY: 


STEP 	 FLSTFP 

I1~34 



xi 
ULTRASIMNC bhT-UP Tr-CHNlqUE PROGRAH 

DATE 
%ePlo 

/-.3 /7?/ 
w]d 

X10 - I 

DELAY Q 

110 : 
TB v 

TXE" 

A+B 

QA 

-

IDTII 

SENSITIVITY 

A- B 

" 

+ 

I 

DEILAY 

X10 

TRANSDUCER; . 

GATE OUT UFD. I 

228 
WIDTHf 

(
OFF 

XO. I 

01 
IN 

X0. I 

DELAY
T4 

21 

Xi Xl 

Q 
DISPLAY 

NORM. LIN.0S-P" 00 

GAIN AUX. GAIN 

REST. LOG. OFF 

GAIN SWEEP RANE 

ON OUT 

FREQt 
- -4 

O0 

RX" 

OpI'T 

R 
REJECT DOUBLE 

ORIGINAL PAGE IS 
6F POOR QUAI= 

Q 
_ 

IN 

SINLE 
OFF PROBE DELAY O 

TX 
P.R'F 



ULTRASON1C SET-UP TEcHNtQUE PRO.RAM Yj Fflush wjd 
xi DATE /.-/g 

0 
x1o 

0 + 

DELAY 0 

Xl 

0 
x1O 
TB0 WIDTH 

E SENSITIVITY 0 

TX 

A+B 

A-B 

DELAY C 

TRANSDUCER; 

GATE OUT UFD. 1 

WIDTH OFF IN MM 
MM X0. 1 XO. I 

*©60 xi xi 

NORM. LIN. 0 

REST. LOG. OFF 

GAIN AUX. GAIN GAIN SWEEP 

OUT GANSEPRAZEk 

ON OUT 

OFF IN 

FREQ., REJECT 
DOUBLE U SINGLE 

OFF PROBE DELAY 0 
TX 

P.R.F. 

RX 0 



BEFEIENOE PANEL #15, I/8" Flush 

BFEBENCE PANEL # O, 1/2H Flush 

ORIGINAL PAGE IS 
OF POOR QUAupy" 
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- APPENDIX J -

EDDY CURRENT INSPECTION AND RECORDING OF 

WELD CRACK ALUMINUM PANELS HAVING CROWNS 

1.0 SCOPE
 

1.1 	 This procedure covers eddy current recorded inspection for
 

detecting cracks in welded aluminum panels having crowns.
 

2.0 REFERENCES
 

2.1 	 Manufacturer's instruction manual for the NDT Instruments Model
 

Vector 111 Eddy Current Instrument.
 

2.2 	 Nondestructive Testing Training Handbooks, PI-4-5, Volumes I and
 

II, Eddy Current Testing, General Dynamics, 1967.
 

2.3 	 Nondestructive Testing Handbook, McMasters, Ronald Press, 1959,
 

Volume II, Sections 35-41.
 

3.0 EQUIPMENT
 

3.1 	 NDT Instruments Vector III Eddy Current Instrument.
 

3.1.1 	 100 KHz Probe for Vector ill. Core diameter 0.063 inch.
 

NOTE: This is a single core, helically wound coil.
 

3.2 	 NDE Reference Panel #4, Flaw Length .155 inch.
 

3.3 	 SR 150 Budd, Ultrasonic Bridge.
 

3.4 	 319DA Alden, Recorder.
 

3.5 	 Special Probe Scanning Fixture for Weld Crack Panels. (#2)
 

3.6 	 Special Eddy Current Recorder Controller Circuit.
 

3.7 	 Dual DC Power Supply; 0-25V, 0-1A (Hp Model 6227B or equivalent).
 

4.0 PROCEDURE
 

4.1 	 Connect 100KHz Probe to Vector I1 instrument.
 

4.2 	 Turn instrument power on and set Sensitivity Course control to
 

position #1.
 

4.3 	 Check batteries by operating power switch to BAT position.
 

These shobl be checked every two hours of use.
 

4.3.1 	Meer should read above 70.
 

4.4 	 Connect Recorder Controller circuit
 

4.4.1 	Set Power Supply for +16 volts and -16 volts.
 

4.5 	 Set up weld panel scanning support fixture, shims and spacers
 

as follows:
 

4.5.1 	If longitudinal welded panels are being scanned, clamp an
 

end plate of the same thickness as welded panel to the
 

support fixture. Align the end scan plate, using one
 

weld panel so that the scan probe will be centered over
 
J-1
 



the entire length of the weld bead. Secure the weld
 

panel with weights/clamps as required. Verify that the
 

scan 	probe holder is making sufficient contact with the
 

weld 	bead such that the scan probe springs are unrestrained
 

by limiting devices. Secure an end scan plate at opposite
 

end of weld panel. Verify that scan probe holder has
 

sufficient clearance for scan-travel. One logitidinal
 

welded panel will be scanned at a time.
 

4.5.2 If transverse welded panels are being scanned, set up
 

as in 4.5.1, except that two weld panels are placed side
 

by side so that the weld beads are aligned with the scan
 

probe.
 

4.5.3 	 Use shims or clamps to provide smooth scan probe transition
 

between weld panel and end plates.
 

4.6 	Set Vector 111 controls as follows:
 

x 189.7
 

R 404.0
 

Sensitivity, Course 8, Fine 5.
 

4.7 	 Set the Recorder controls for scanning as follows:
 

Index Step Increment .020 inch
 

Carriage Speed .029
 

Scan Limits set to scan 1 inches beyond the panel edges
 

Bridge OFF and bridge mechanically clamped.
 

4.8 	Manually move the scan probe over panel inspection region to
 

determine background level as close as possible to the Recorder
 

Controller switching point (meter indication for switching point
 

is 40 for positive-going indication of a flaw, 42 for negative­

going indication).
 

4.9 	 Initiate the Recorder/Scan function.
 

4.10 	Vary the Vector 11 Scale control as required to locate flaws.
 

Use the Carriage Scan switch on the Recorder control panel to
 

stop scan for resetting of background level.
 

4.11 	Repeat step 4.8 (background level determination) and 4.9 for the
 

second panel if located in the support fixture. Annotate recordings
 

with panel identification data.
 

J-2 



4.12 	Evaluate recordings for flaws and enter panel and flaw location
 

on applicable data sheet. Observe correct orientation of
 

reference hole edge of each panel when measuring location of
 

a flaw.
 

5.0 	 PERSONNEL
 

5.1 	 Only qualified personnel shall perform inspections.
 

6.0 	 SAFETY
 

6.1 	Operation should be in accordance with Standard,Safety Procedure
 

used in operating any electrical device.
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AMENDMENT A 

- APPENDIX , -

NOTE
 

This amendment covers changes
 

in procedure from raster scan
 

recording to analog-recording.
 

4.4.2 	Connect Autoscaler circuit to Vector ill and set back panel
 

switch to AUTO.
 

4.8 Initiate the Recorder Scan function. Set the Autoscaler switch
 

to RESET.
 

4.9 Adjust the Vector 1il Scale control to set the recorder display for
 

no flaw or surface noise indications.
 

4.10 Set the Autoscaler switch to RUN. 

4.11 When all of the signatures of the panels are indicated (all white 

display), stop the recorder. Use the carriage Scan switch on the 

Recorder Control Panel to stop scan. 

4.12 Annotate recordings with panel/side/thickness/reference edge 

identification data. 

4.13 Evaluate recordings for flaws and enter panel and flaw location 

on applicable data sheet. Observe correct orientation of reference 

hole edge of each panel when measuring location of a flaw. 
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-APPENDIXK -

EDDY CURRENT INSPECTION AND C-SCAN RECORDING OF
 

FLUSH WELD ALUMINUM PANELS
 

1.0 	 SCOPE
 

1.1 	 This procedure covers eddy current C-scan inspection
 

detecting fatigue cracks in Aluminum panels with flush welds.
 

2.0 	REFERENCES
 

2.1 	Manufacturer's instruction manual'for the NDT instruments
 

Model Vector Ill Eddy Current Instrument.
 

2.2 	Nondestructive Testing Training Handbooks, P1-4-5,
 

Volumes I and I1, Eddy Current Testing, General Dynamics, 1967.
 

2.3 	Nondestructive Testing Handbook, MeMasters, Ronald Press, 1959,
 

Volume II, Sections 35-41.
 

3.0 	EQUIPMENT
 

3.1 	NDT Instruments Vector 111 Eddy Current Instrument.
 

3.1.1 	 100 KHz probe for Vector 111. Core diameter 0.063 inch
 

NOTE: This is a single cor:, helically wound coil.
 

3.2 	 SR 150 Budd, Ultrasonic Bridge.
 

3.3 	 319DA Alden, Recorder.
 

3.4 	Special Probe Scanning Fixture for Weld Panels. (#5)
 

3.5 	Dual DC Power Supply; 0-25V, 0-1A (HP Model 6227B or equivalent).
 

3.6 	NDE reference panel no. 41.
 

3.7 	 Special Eddy Current Recorder Controller circuit.
 

4.0 	PROCEDURE
 

4.1 	Connect 100 KIz probe to Vector 111 instrument.
 

'.2 	 Turn instrument power on and set SENSITIVITY COURSE control
 

to position 1.
 

4.3 	Check batteries by operating power switch to BAT position.
 

Batteries should be checked every two hours of use. Meter
 

should read above 70.
 

4.4 	Connect C-scan/Recorder Controller Circuit
 

4.4.1 	Set Power Supply for +16 volts and -16 volts.
 

4.4.2 Set "U/S E/C" switch to E/C.
 

4.4.3 	 Set OP AMP switch to OPR.
 

4.4.4 Set RUN/RESET switch to RESET.
 



4.5 Set up weld panel scanning support fixture as follows:
 

4.5.1 	Clamp an end scan plate of the same thickness as the.
 

weld panel to the support fixture. One weld panel
 

will be scanned at a time.
 

4.5.2 	Align the end scan plate, using one weld panel so that
 

the scan probe will be centered over the entire length of
 

the weld bead.
 

4.5.3 	Use shims or clamps to provide smooth scan transition
 

between weld panel and end plates.
 

4.5.4 	Verify that scan probe is making sufficient contact with
 

panel.
 

4.5.5 	Secure the weld panel with weights or clamps as required.
 

4.5.6 	Secure an end scan plate at opposite end of weld panel.
 

4.6 Set Vector III controls as follows:
 

"X" 189.5 

"R" 404.0 

SENSITIVITY, COURSE 8, FINE 4. 

MANUAL/AUTO switch to MAN.
 

4.7 Set the Recorder controls for scanning as follows:
 

Index Step Increment .020 inch
 

CarriageSpeed .029
 

Scan Limits set to scan i inches beyond the panel edge.
 

Bridge BRIDGE
 

4.8 Manually position the scan probe over the center of the weld.
 

4.9 Manually scan the panel to locate an area of the weld that con­

tains no flaws (decrease in meter reading).
 

With the probe at this location, adjust the Vector ill Scale con­

trol to obtain a meter indication of 10 (meter indication for
 

switching point is 25).
 

4.10 Set Bridge switch to OFF and locate probe just off the edge
 

of the 	weld.
 



4.11 	 Set the Bridge switch to BRIDGE. 

4.12 	Initiate the Recorder/Scan function.
 

4.13 	 Annotate recordings with panel reference edge and serial 

number data, 

4.1 1 	 Evaluate recordings for flaws and enter panei, flaw location 

and length data on applicable data sheet. Observe correct
 

orientation of reference hole edge of each panel when measuring
 

location of flaws.
 

5.0 	 PERSONNL 

5.1 	 Only qualified personnel shall perform inspection. 

6.o 	 SAFETY 

6.1 	Operation should be in accordance with Standard Safety Procedure
 

used in operating any electrical device.
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