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1. Introduction 

Gonadotropins are protein hormones secreted by the pituitary gland and include luteinizing 

hormone (LH) and follicle stimulating hormone (FSH).  Both LH and FSH govern the estrous 

cycle i.e. the cyclical pattern of ovarian activity that facilitates the transition of female animals 

between periods of reproductive non-receptivity to receptivity enabling mating and 

subsequent pregnancy. The onset of estrous cycles occurs at the time of puberty. In heifers 

puberty occurs at 6–12 months of age, generally at a weight of 200–250 kg. The normal 

duration of an estrous cycle in cattle is 18–24 days. The cycle consists of two discrete phases: 

the luteal phase (14–18 days) and the follicular phase (4–6 days). The luteal phase is the period 

following ovulation when the corpus luteum (CL) is formed (often further designated as met-

estrus and diestrus), while the follicular phase is the period following the demise of the corpus 

luteum (luteolysis) until ovulation (often further designated as pro-oestrus and oestrus). 

During the follicular phase, final maturation and ovulation of the ovulatory follicle occurs, the 

oocyte is released into the oviduct allowing the potential for fertilization.  

2. Gonadotropin regulation of follicle growth during the estrous cycle 

Cattle are polyestrous animals and display estrous behavior approximately every 21 days. 

The estrous cycle is regulated by the hormones of the hypothalamus (gonadotropin-

releasing hormone; GnRH), the anterior pituitary (follicle-stimulating hormone; FSH and 

luteinizing hormone; LH), the ovaries (progesterone; P4, estradiol; E2 and inhibins) and the 

uterus (prostaglandin F2; PGF). These hormones function through a system of positive and 

negative feedback to govern the estrous cycle of cattle [1]. GnRH was first isolated from the 

hypothalamus of pigs and is a decapeptide [2, 3]. Its control of the estrous cycle is mediated 

via its actions on the anterior pituitary which regulates the secretion of the gonadotrophs, 

LH and FSH [4].  
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The pulsatile secretion of basal levels of GnRH from the tonic center of the hypothalamus 

and the pre-ovulatory surge of GnRH from the surge center of the hypothalamus prevents 

the desensitisation of the GnRH receptor on the gonadotroph cells of the anterior pituitary. 

After transportation of GnRH from the hypothalamus to the pituitary gland via the 

hypophyseal portal blood system [5], GnRH binds to its G-protein coupled receptor on the 

cell surface of the gonadotroph cells [6]. This binding releases intracellular calcium which 

activates intermediaries in the mitogen activated protein kinases (MAPK) signaling pathway 

culminating in the release of FSH and LH from storage compartments in the cytoplasm [7]. 

FSH is only stored in secretory granules in the cytoplasm for short periods of time, whereas 

LH is stored for longer periods during the estrous cycle [8]. During the follicular phase of 

the estrous cycle there is a hormonal environment of basal progesterone due to the 

regression of the corpus luteum (CL). The increased E2 concentrations, derived from the 

rapid proliferation of the pre-ovulatory dominant follicle (DF), concomitant with the 

decrease in circulating concentrations of progesterone, induces a surge in GnRH and allows 

the display of behavioral estrus during which heifers/cows are sexually receptive and will 

stand to be mounted [9]. This pre-ovulatory GnRH surge induces a coincidental LH and 

FSH surge [10]. Only when serum progesterone concentrations are basal and LH pulse 

frequency increases to one per hour for 2–3 days does the DF ovulate [1]. Ovulation occurs 

10–14 h after estrus and is followed by the luteal phase of the estrous cycle. The beginning of 

the luteal phase is also known as met-estrus and typically lasts 3–4 days. It is characterised 

by the formation of the CL from the collapsed ovulated follicle (corpus haemorragicum). 

Following ovulation, progesterone concentrations begin to increase due to the formation of 

the CL in which the granulosa and theca cells of the ovulated DF lutenize and produce 

progesterone in readiness for the establishment and maintenance of pregnancy and/or 

resumption of the estrous cycle [11]. During the di-estrous phase, progesterone 

concentrations remain elevated and recurrent waves of follicle development continue to be 

initiated by release of FSH from the anterior pituitary. However, these DFs that grow during 

the luteal phase of the estrous cycle do not ovulate, due to inadequate LH pulse frequency. 

The progesterone dominant luteal phase of the estrous cycle, through negative feedback, 

only allows the secretion of greater amplitude but less frequent LH pulses (one pulse per 3 

to 4 hours) that are inadequate for ovulation of the DF [12]. Finally, during the pro-estrous 

period, progesterone concentrations decrease when the CL regresses in response to PGF 

secretion from the uterus [13]. 

3. Gonadotropin regulation of final maturation of the pre-ovulatory 

follicle and ovulation 

The growth, development and maturation of ovarian follicles are fundamental processes for 

high reproductive efficiency in farm animals. A fixed number of primordial follicles are 

established during fetal development with ovarian follicle growth taking a period of 3–4 

months and categorized into gonadotropin independent and gonadotropin dependent 

stages [14]. Gonadotropin dependent follicle growth in cattle occurs in waves with 2–3 

waves per estrous cycle [15, 16 Fig.1]. 
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Figure 1. Schematic depiction of the pattern of secretion of follicle-stimulating hormone (FSH; blue 

line), luteinizing hormone (LH; green lines), and progesterone (P4; orange line); and the pattern of 

growth of ovarian follicles during the estrous cycle in cattle. Each wave of follicular growth is preceded 

by a transient rise in FSH concentrations. Healthy growing follicles are shaded in yellow, atretic follicles 

are shaded red. A surge in LH and FSH concentrations occurs at the onset of estrus and induces 

ovulation. The pattern of secretion of LH pulses during an 8-h window early in the luteal phase (greater 

frequency, lesser amplitude), the mid-luteal phase (lesser frequency, lesser amplitude) and the follicular 

phase (high frequency, building to the surge) is indicated in the inserts in the top panel. Taken from 

[17]. 

Each wave of growth involves emergence, selection and dominance followed by either 

atresia or ovulation of the DF. As mentioned above both FSH and LH have a prominent role 

in ovarian follicle development. Given that follicles are involved in the positive and negative 

feedback mechanisms of the hypothalamic–pituitary–gonadal (HPG) axis (estradiol and 

inhibins), these hormones have a governing role in the regulation of the estrous cycle of 

cattle. The beginning of gonadotropin dependent follicle development is typified by the 

emergence of a follicle cohort typically consisting of 5–20 follicles ≥5mm and is correlated 

with a transient increase in FSH concentrations [10, 18]. This marks the beginning of 

dependency of follicle growth on FSH [19] with FSH receptors (FSH-R) localized within the 

granulosa cells of the follicles by Day 3 of the follicle wave [20, 21]. This enables FSH to 

perform its required down stream signalling effects including promoting cellular growth 

and proliferation [22, 23]. These transient increases in FSH concentrations also leads to an 

increase in aromatase enzyme activity (P450arom; CYP19), in the granulosa cells of ovarian 

follicles, which converts androgen to estrogen [24]. As the DF is selected from the cohort of 

follicles, the diameter increases and it is recognized as the largest healthy follicle in the 

cohort [25].  This increase in size leads to an increase in follicular fluid estradiol and inhibin 

concentrations [24].  Dominance occurs when the the DF reaches 9 mm in diameter, and it 

actively suppresses FSH, thus preventing further follicle wave emergence until the DF either 

undergoes atresia or ovulated.  The increase in estradiol concentrations in concert with 

inhibin are the key endocrine signals that suppress FSH concentrations from the anterior 
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pituitary gland via negative feedback reducing FSH to basal concentrations [10, 26, 27]. The 

selected DF becomes increasingly responsive to LH [27] and continues growth in the face of 

decreasing FSH concentrations.  Irrespective of the stage of the estrous cycle during which 

follicles develop, the switch from FSH [18] to LH dependency [28] is propagated through the 

presence of LH receptors (LH-R) on the granulosa cells [29]. LH-R are localised to the theca 

and granulosa cells of healthy follicles, at different stages of follicle development [20]. As the 

follicle grows, the theca cell LH-R increases and LH-R is acquired by the granulosa cells of 

the follicle undergoing selection to become the DF [29-31]. Moreover, evidence suggests 

transient increases in circulating LH concentrations that occur at or around the time of 

follicle selection [32], allows the DF to continue E2 production and grow in the face of 

declining FSH concentrations [33]. During the early luteal phase lesser amplitude and 

greater frequency (20–30 pulses/24 h) LH pulses occur, in the mid-luteal period LH pulses 

are of greater amplitude and lesser frequency (6–8 pulses/24 h) both of which are of 

insufficient amplitude and frequency for final maturation and subsequent ovulation of the 

DF [12]. Thus, the DFs produced during the luteal phase of the estrous cycle undergo 

atresia, E2 and inhibin production decreases, and removes this negative feedback block to 

the hypothalamus/pituitary, FSH secretion can increase and a new follicle wave emerges. 

The production of high concentrations of estradiol is a defining characteristic of the DF [33, 

34] and prior to visible differences in follicle diameter; the putative DF has greater follicular 

fluid concentrations of estradiol compared with other follicles in its cohort [10, 35, 36]. The 

synthesis of estradiol is dependent on the production of androgens in the theca cells and 

subsequent aromatisation of these androgens to estrogens in the granulosa cells known as 

the two cell/two gondatropin model [37]. Production of estradiol from growing follicles is 

dependent on sufficient LH pulse frequency [38, 39]. The binding of LH to its receptors in 

the theca cells drives the conversion of cholesterol to testosterone through a series of 

catalytic reactions [40].  Testosterone, once produced in the theca cells, diffuses out into the 

granulosa cells where it is converted to estrogens by the aromatase enzyme [40]. Estradiol 

not only has a local effect on follicle development, but it also has a systemic role via a 

positive feedback mechanism to the hypothalamus and pituitary gland.  During the 

follicular phase of the estrous cycle, when progesterone concentrations are basal, this large 

concentration of estradiol produced by the pre-ovulatory DF induces a GnRH surge from 

the hypothalamus. The resulting LH surge is of sufficient amplitude and frequency to 

stimulate final maturation and ovulation of the DF [10]. The increased estradiol 

concentrations also induces expression of estrous behavour, required for successful mating 

[41]. Other intra-ovarian produced factors play a role in regulating the estrous cycle either 

indirectly by altering the synthesis of estradiol or via direct negative feedback mechanisms 

to the hypothalamus and the anterior pituitary gland. The insulin like growth factor (IGF) 

super-family consisting of its two ligands IGF-I and IGF-II [42-44], two receptors IGFR-I and 

IGFR-II [45], and it numerous binding proteins and proteases (IGFBP 1-6, pregnancy-

associated plasma protein-A: PAPP-A) are responsible for the bioavailability of IGF-1 in the 

ovarian follicle. The bioavailability of IGF-I contributes to the growth, proliferation and 

steroidogenic capacity of the future DF [36, 46, 47], indirectly affecting the estradiol induced 

negative feedback mechanism to the hypothalamus and pituitary. This in addition to early 
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acquisition of LH receptors by the granulosa cell layer of the follicle undergoing selection 

are considered to be the main mechanisms facilitating the process of follicle selection [48]. 

The transforming growth factor beta (TGF) super-family contains over 30 structurally 

related proteins including ligands (TGF, anti-mullerian hormone, inhibins, activins, and 

bone morphogenetic proteins (BMP’s), receptors (TGFRI and II, activin receptor-like kinases; 

ALK’s, accessory receptors (TGF-RIII) and downstream signaling molecules (similar to 

mothers against decapentaplegic; SMADS). The ligand members of this super-family were 

first identified in follicular fluid through their modulation of secreted FSH [49]. Activin can 

increase the production of estradiol in follicular fluid [50] whereas follistatin impedes 

activins’ positive steroidogenic effects, both of which can alter the estradiol feedback 

mechanism to the hypothalamus and pituitary [51]. Inhibins which have been detected in 

granulosa cells in cattle play a role in the suppression of FSH secreted in the anterior 

pituitary also regulating the oestrous cycle [52]. 

4. Estrous behavior 

A recent review of the literature [53] reported mean inter-ovulatory intervals of 22.9 and 

22.0 days for lactating dairy cows and heifers, respectively. Standing to be mounted by a 

bull or herd mate is the primary and most definitive sign of oestrus in cattle. Estrogen, 

specifically, estradiol, is the primary signal to the brain that induces expression of estrus, but 

only in the absence of progesterone [54]. It appears that stressors which elevate blood 

concentrations of cortisol are capable of delaying or blocking the pre-ovulatory LH surge 

and affecting the expression of estrus without altering pro-oestrous concentrations of blood 

oestradiol (see review by [55]). In a recent review, Diskin [56] calculated that for dairy cows 

the average duration of standing estrus was 8.1 h with 9.1 standing events or mounts 

recorded during standing estrus. There is evidence [57] that the duration of standing estrus 

decreases as milk production increases (14.7 and 2.8 h in cows yielding 25 or 55 kg milk, 

respectively). For heifers it would appear that the duration of standing estrus is somewhat 

longer, 12–14 h [56]. For beef cows, kept indoors, the average duration of standing estrus has 

been reported to be less than 8.5 h [56]. Both the duration of standing estrus and intensity of 

estrous expression are affected by a range of environmental factors including under foot 

surface type, size of the sexually active group and the presence of a bull [56]. Breaks or 

quiescent interludes in standing activity have also been observed in 30% of dairy cows at 

[58] while breaks with an average duration of 2.6 h in 67% of beef heifers have been 

recorded [59]. There is no evidence from dairy cows [60], beef cows or heifers [56] that either 

the onset of standing estrus or end of estrus follows any distinct diurnal pattern. 

5. Gonadotropin regulation of Corpus luteum function  

The CL originates from the cells of the ovulatory follicle. LH, the major luteotropic hormone 

in cattle [61], is responsible for stimulating luteinization of the theca and granulosa cells of 

the pre-ovulatory follicle into luteal cells [62]. The function of the CL is to produce sufficient 

concentrations of progesterone throughout the luteal phase of the estrous cycle to maintain 
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pregnancy (if a conceptus is present) and during pregnancy, to decrease gonadotropin 

secretion and prevent behavioral oestrus occurring. Progesterone is required for the 

maintenance of pregnancy with many studies reporting a positive association between 

progesterone concentrations and the probability of embryo survival [63-66]. The proposed 

mechanisms by which progesterone affects embryo survival are indirect, not acting on the 

embryo itself but via effects on the uterine endometrium [67, 68]. Available evidence in both 

cattle and sheep, has identified that sustained increased concentrations of progesterone 

during the luteal phase of the estrous cycle alters the expression pattern of genes in the 

uterus [69-73] which in turn alters the composition of the uterine histotroph i.e. availability 

of enzymes, carrier proteins, hormones and nutrients to the developing embryo prior to 

implantation [68]. Moreover, alterations in systemic progesterone during the early luteal 

phase have been shown to have significant effects on conceptus elongation [67, 71, 74]. 

During the mid-luteal phase, these sustained high concentrations of circulating 

progesterone down regulate the nuclear progesterone receptor in the luminal epithelium of 

the endometrium [75]. This is a critical switch in allowing the synchronous increase or 

decrease in genes of the endometrium that are required to initiate uterine receptivity – 

regardless of the pregnancy status of the animal [76]. If, by Day 16 of the estrous cycle, the 

maternal recognition of pregnancy signal (interferon tau) has not been detected in sufficient 

quantities, luteolysis of the CL occurs. PGF is secreted by the uterus in the bovine [77] and is 

the major luteolytic hormone in ruminants [78-80]. Oxytocin receptors in the uterus binds 

oxytocin which propagates the episodic secretion of PGF from the uterus. PGF then 

mediates the luteolytic mechanism via countercurrent exchange between the uterine vein 

and the ovarian artery (Fig. 2), inducing regression of the CL. This reduces circulating 

progesterone concentrations, estradiol concentrations increase and GnRH in the 

hypothalamus is stimulated as the animal enters the follicular phase of the estrous cycle. 

6. Conclusions 

The estrous cycle in cattle is typically 18–24 days in duration, with estrous behavior 

expressed for a 2–24-h period during the late follicular phase. During normal estrous cycles 

there are typically two to three and occasionally four waves of follicular growth each 

involving a period of emergence, selection and dominance followed by either atresia or 

ovulation of the DF. The gonadotropin hormones FSH and LH are the main regulators of 

folliculogenesis and steroidogenesis with LH being the major luteotrophic hormone. LH 

pulse frequency is the major determinant affecting the ultimate fate of a selected DF. 

Pulsatile PGF of uterine origin is the main hormonal signal that induces luteolysis of the CL 

and the switch from the luteal to the follicular phase of the estrous cycle. 
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