173 research outputs found

    LAPS Lidar Measurements at the ARM Alaska Northslope Site (Support to FIRE Project)

    Get PDF
    This report consists of data summaries of the results obtained during the May 1998 measurement period at Barrow Alaska. This report does not contain any data interpretation or analysis of the results which will follow this activity. This report is forwarded with a data set on magnetic media which contains the reduced data from the LAPS lidar in 15 minute intervals. The data was obtained during the period 15-30 May 1998. The measurement period overlapped with several aircraft flights conducted by NASA as part of the FIRE project. The report contains a summary list of the data obtained plus figures that have been prepared to help visualize the measurement periods. The order of the presentation is as follows: Section 1. A copy of the Statement of Work for the planned activity of the second measurement period at the ARM Northslope site is provided. Section 2. A list of the data collection periods shows the number of one minute data records stored during each hour of operation and the corresponding size (Mbytes) of the one hour data folders. The folder and file names are composed from the year, month, day, hour and minute. The date/time information is given in UTC for easier comparison with other data sets. Section 3. A set of 4 comparisons between the LAPS lidar results and the sondes released by the ARM scientists from a location nearby the lidar. The lidar results show the +/- 1 sigma statistical error on each of the independent 75 m altitude bins of the data. This set of 4 comparisons was used to set and validate the calibration value which was then used for the complete data set. Section 4. A set of false color figures with up to 10 hours of specific humidity measurements are shown in each graph. Two days of measurements are shown on each page. These plots are crude representations of the data and permit a survey which indicates when the clouds were very low or where interesting events may occur in the results. These plots are prepared using the real time sequence plot program which has no smoothing in either the altitude or time (except that you are allowed to pick the integration time and time step. All of these plots were prepared with 15 minute integration and 5 minute time step. Section 5. A set of time sequence data for all of the extended observation periods are shown with a smoothing algorithm from the Matlab plotting library. Most of these data are integrated for 5 minutes and stepped at I minute intervals but several plots are shown with both 15 minute integration and 5 minute steps. The upper level on these data was selected and converted to the white background where the error in the specific humidity reached 25%. Section 6. The set of one hour integrated plots shown with up to 4 hours per page are provided- from the real time analysis snapshot program. The only difference in these plots and the real time display is that the plots are stopped at an altitude where the error appears to be too large for the data to contain any meaningful information

    Researching Market and Supply-Chain Opportunities for Local Foods Systems: Setting Priorities and Identifying Linkages

    Get PDF
    There is an increasing array of land-grant, nonprofit, and other academic programs intended to support the development of food system enterprises and programs. However, research to track consumers\u27 evolving preferences and behaviors within these systems and to measure the intended policy outcomes of any public investments in these systems is lagging. This research commentary represents a compilation of opinions and insights from those who are interested in exploring research priorities for economic, marketing, and supply-chain aspects of local food systems. The priorities that emerge are framed in the following way: (1) opportunities for increased and more targeted research to help identify gaps in the literature; (2) areas where current localized research projects could be leveraged and scaled up to the national level; and (3) innovative projects and partnerships that are evolving to bridge both knowledge and systems gaps

    Characterization and System Identification of XY Flexural Mechanism Using Double Parallelogram Manipulator for High Precision Scanning

    Get PDF
    This article represents modeling of double parallelogram flexural manipulator derived from basic classical mechanics theory. Fourth order vibration wave equation is used for mathematical modeling and its performance is determined for step input and sinusoidal forced input. Static characterization of DFM is carried out to determine stiffness and force deflection characteristics over the entire motion range and dynamic characteristics is carried out using Transient response and Frequency response. Transient response is determined using step input to DFM which gives system properties such as damping, rise time and settling time. These parameters are then compared with theoretical model presented previously. Frequency response of DFM system gives characteristics of system with different frequency inputs which is used for experimental modeling of DFM device. Here, Voice Coil Motor is used as Actuator and optical encoder is used for positioning sensing of motion stage. It is noted that theoretical model is having 5% accuracy with experimental results. To achieve better position and accuracy, PID and LQR (Linear Quadratic Regulator) implementation was carried out on experimental model. PID gains are optimally tuned by using Ziegler Nichols approach. PID control is implemented experimentally using dSPACE DS1104 microcontroller and Control Desk software. Experimentally, it is observed that positioning accuracy is less than 5 μm. Further multiple DFM blocks are arranged for developing XY flexural mechanism and static characterization was carried out on it. The comparison of experimental and FEA results for X-direction and Y-direction is presented at end of paper

    Inkjet printing of transdermal microneedles for the delivery of anticancer agents

    Get PDF
    A novel inkjet printing technology is introduced as a process to coat metal microneedle arrays with three anticancer agents 5-fluororacil, curcumin and cisplatin for transdermal delivery. The hydrophilic graft copolymer Soluplus® was used as a drug carrier and the coating formulations consisted of drug–polymer solutions at various ratios. A piezoelectric dispenser jetted microdroplets on the microneedle surface to develop uniform, accurate and reproducible coating layers without any material losses. Inkjet printing was found to depend on the nozzle size, the applied voltage (mV) and the duration of the pulse (μs). The drug release rates were determined in vitro using Franz type diffusion cells with dermatomed porcine skin. The drug release rates depended on the drug–polymer ratio, the drug lipophilicity and the skin thickness. All drugs presented increased release profiles (750 μm skin thickness), which were retarded for 900 μm skin thickness. Soluplus assisted the drug release especially for the water insoluble curcumin and cisplatin due to its solubilizing capacity. Inkjet printing was proved an effective technology for coating of metal microneedles which can then be used for further transdermal drug delivery applications

    CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield.

    Get PDF
    By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2-3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.This material is based upon work supported by the National Science Foundation under Grant No. 1007793 and was also supported by Airbus group, Boeing, Embraer, Lockheed Martin, Saab AB, Hexcel, and TohoTenax through MIT’s Nano- Engineered Composite aerospace STructures (NECST) Consortium. This research was supported (in part) by the U.S. Army Research Office under Contract W911NF-13-D-0001. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF Award No. ECS-0335765. CNS is part of Harvard University. This work was carried out in part through the use of MIT Microsystems Technology Laboratories. Stephan Hofmann acknowledges funding from EPSRC under grant EP/H047565/1. Piran Kidambi acknowledges the Lindemann Trust Fellowship.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/ja509872y
    • …
    corecore