44 research outputs found

    In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The per-operative assessment of primary stem stability may help to improve the performance of total hip replacement. Vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. The objective of the present study was to evaluate in vivo a vibration analysis-based endpoint criterion for the insertion of the stem by successive surgeon-controlled hammer blows.</p> <p>Methods</p> <p>A protocol using a vibration analysis technique for the characterisation of the primary bone-prosthesis stability was tested in 83 patients receiving a custom-made, intra-operatively manufactured stem prosthesis. Two groups were studied: one (n = 30) with non cemented and one (n = 53) with partially cemented stem fixation. Frequency response functions of the stem-femur system corresponding to successive insertion stages were compared.</p> <p>Results</p> <p>The correlation coefficient between the last two frequency response function curves was above 0.99 in 86.7% of the non cemented cases. Lower values of the final correlation coefficient and deviations in the frequency response pattern were associated with instability or impending bone fracture. In the cases with a partially cemented stem an important difference in frequency response function between the final stage of non cemented trial insertion and the final cemented stage was found in 84.9% of the cases. Furthermore, the frequency response function varied with the degree of cement curing.</p> <p>Conclusion</p> <p>The frequency response function change provides reliable information regarding the stability evolution of the stem-femur system during the insertion. The protocol described in this paper can be used to accurately detect the insertion end point and to reduce the risk for intra-operative fracture.</p

    A custom-made guide-wire positioning device for Hip Surface Replacement Arthroplasty: description and first results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hip surface replacement arthroplasty (SRA) can be an alternative for total hip arthroplasty. The short and long-term outcome of hip surface replacement arthroplasty mainly relies on the optimal size and position of the femoral component. This can be defined before surgery with pre-operative templating. Reproducing the optimal, templated femoral implant position during surgery relies on guide wire positioning devices in combination with visual inspection and experience of the surgeon. Another method of transferring the templated position into surgery is by navigation or Computer Assisted Surgery (CAS). Though CAS is documented to increase accurate placement particularly in case of normal hip anatomy, it requires bulky equipment that is not readily available in each centre.</p> <p>Methods</p> <p>A custom made neck jig device is presented as well as the results of a pilot study.</p> <p>The device is produced based on data pre-operatively acquired with CT-scan. The position of the guide wire is chosen as the anatomical axis of the femoral neck. Adjustments to the design of the jig are made based on the orthopedic surgeon's recommendations for the drill direction. The SRA jig is designed as a slightly more-than-hemispherical cage to fit the anterior part of the femoral head. The cage is connected to an anterior neck support. Four knifes are attached on the central arch of the cage. A drill guide cylinder is attached to the cage, thus allowing guide wire positioning as pre-operatively planned.</p> <p>Custom made devices were tested in 5 patients scheduled for total hip arthroplasty. The orthopedic surgeons reported the practical aspects of the use of the neck-jig device. The retrieved femoral heads were analyzed to assess the achieved drill place in mm deviation from the predefined location and orientation compared to the predefined orientation.</p> <p>Results</p> <p>The orthopedic surgeons rated the passive stability, full contact with neck portion of the jig and knife contact with femoral head, positive. There were no guide failures. The jig unique position and the number of steps required to put the guide in place were rated 1, while the complexity to put the guide into place was rated 1-2. In all five cases the guide wire was accurately positioned. Maximum angular deviation was 2.9° and maximum distance between insertion points was 2.1 mm.</p> <p>Conclusions</p> <p>Pilot testing of a custom made jig for use during SRA indicated that the device was (1) successfully applied and user friendly and (2) allowed for accurate guide wire placement according to the preoperative plan.</p

    Comparison of intra-articular injections of Hyaluronic Acid and Corticosteroid in the treatment of Osteoarthritis of the hip in comparison with intra-articular injections of Bupivacaine. Design of a prospective, randomized, controlled study with blinding of the patients and outcome assessors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although intra-articular hyaluronic acid is well established as a treatment for osteoarthritis of the knee, its use in hip osteoarthritis is not based on large randomized controlled trials. There is a need for more rigorously designed studies on hip osteoarthritis treatment as this subject is still very much under debate.</p> <p>Methods/Design</p> <p>Randomized, controlled trial with a three-armed, parallel-group design. Approximately 315 patients complying with the inclusion and exclusion criteria will be randomized into one of the following treatment groups: infiltration of the hip joint with hyaluronic acid, with a corticosteroid or with 0.125% bupivacaine.</p> <p>The following outcome measure instruments will be assessed at baseline, i.e. before the intra-articular injection of one of the study products, and then again at six weeks, 3 and 6 months after the initial injection: Pain (100 mm VAS), Harris Hip Score and HOOS, patient assessment of their clinical status (worse, stable or better then at the time of enrollment) and intake of pain rescue medication (number per week). In addition patients will be asked if they have complications/adverse events. The six-month follow-up period for all patients will begin on the date the first injection is administered.</p> <p>Discussion</p> <p>This randomized, controlled, three-arm study will hopefully provide robust information on two of the intra-articular treatments used in hip osteoarthritis, in comparison to bupivacaine.</p> <p>Trial registration</p> <p>NCT01079455</p

    Michiel Mulier's Quick Files

    No full text
    The Quick Files feature was discontinued and it’s files were migrated into this Project on March 11, 2022. The file URL’s will still resolve properly, and the Quick Files logs are available in the Project’s Recent Activity

    Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models

    No full text
    The total number of total hip arthroplasties is increasing every year, and approximately 10% of these surgeries are revisions. New implant design and surgical techniques are evolving quickly and demand accurate preclinical evaluation. The initial stability of cementless implants is one of the main concerns of these preclinical evaluations. A broad range of initial stability test methods is currently used, which can be categorized into two main groups: Load-to-failure tests and relative micromotion measurements. Measuring relative micromotion between implant and bone is recognized as the golden standard for implant stability testing as this micromotion is directly linked to the long-term fixation of cementless implants. However, specific custom-made set-ups are required to measure this micromotion, with the result that numerous studies opt to perform more straightforward load-to-failure tests. A custom-made micromotion test set-up for artificial acetabular bone models was developed and used to compare load-to-failure (implant push-out test) with micromotion and to assess the influence of bone material properties and press-fit on the implant stability. The results showed a high degree of correlation between micromotion and load-to-failure stability metrics, which indicates that load-to-failure stability tests can be an appropriate estimator of the primary stability of acetabular implants. Nevertheless, micromotions still apply as the golden standard and are preferred when high accuracy is necessary. Higher bone density resulted in an increase in implant stability. An increase of press-fit from 0.7 mm to 1.2 mm did not significantly increase implant stability
    corecore