19 research outputs found

    First COVID-19 Case in Zambia - Comparative phylogenomic analyses of SARS-CoV-2 detected in African countries

    Get PDF
    Since its first discovery in December 2019 in Wuhan, China, COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread rapidly worldwide. Whilst African countries were relatively spared initially, the initial low incidence of COVID-19 cases was not sustained for long due to continuing travel links between China, Europe and Africa.. In preparation, Zambia had applied a multisectoral national epidemic disease surveillance and response system resulting in the identification of the first case within 48 hours of the individual entering the country by air travel from a trip to France. Contact tracing showed that SARS-CoV-2 infection was contained within the patient's household, with no further spread to attending health care workers or community members. Phylogenomic analysis of the patient's SARS-CoV-2 strain showed it belonged to lineage B.1.1., sharing the last common ancestor with SARS-CoV-2 strains recovered from South Africa. At the African continental level, our analysis showed that lineage B.1 and B.1.1 lineages appear to be predominant in Africa. Whole genome sequence analysis should be part of all surveillance and case detection activities in order to monitor the origin and evolution of SARS-CoV-2 lineages across Africa

    Genetic and antigenic variation of the bovine tick-borne pathogen Theileria parva in the Great Lakes region of Central Africa

    Get PDF
    BACKGROUND : Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM) provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigencoding genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones of DRC and Burundi. RESULTS : The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine. CONCLUSIONS : Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.Additional file 1: Table S1. Cattle blood sample distribution across agroecological zones.Additional file 2: Table S2. Nucleotide and amino acid sequences of Tp1 and Tp2 antigen epitopes from T. parva Muguga reference sequence.Additional file 3: Table S3. Characteristics of 119 T. parva samples obtained from cattle in different agro-ecological zones (AEZs) of The Democratic Republic of Congo and Burundi.Additional file 4: Figure S1. Multiple sequence alignment of the 11 Tp1 gene alleles obtained in this study.Additional file 5: Table S4. Estimates of evolutionary divergence between gene alleles for Tp1 and Tp2, using proportion nucleotide distance.Additional file 6: Table S5. Tp1 and Tp2 genes alleles with their corresponding antigen variants.Additional file 7: Table S6. Amino acid variants of Tp1 and Tp2 CD8+ T cell target epitopes of T. parva from DRC and Burundi.Additional file 8: Figure S2. Multiple sequence alignment of the 10 Tp2 gene alleles obtained in this study.Additional file 9: Table S7. Distribution of Tp1 gene alleles of T. parva from cattle and buffalo in the sub-Saharan region of Africa.Additional file 10: Table S8. Distribution of Tp2 gene alleles of T. parva from cattle and buffalo in the sub-Saharan region of Africa.Additional file 11: Figure S3. Neighbor-joining tree showing phylogenetic relationships among 48 Tp1 gene alleles described in Africa.Additional file 12: Figure S4. Phylogenetic tree showing the relationships among concatenated Tp1 and Tp2 nucleotide sequences of 93 T. parva samples from cattle in DRC and Burundi.This study is part of the PhD work supported by the University of Namur (UNamur, Belgium) through the UNamur-CERUNA institutional PhD grant awarded to GSA for bioinformatic analyses, interpretation of data and manuscript write up in Belgium. The laboratory aspects (molecular biology analysis) of the project were supported by the BecA-ILRI Hub through the Africa Biosciences Challenge Fund (ABCF) programme. The ABCF Programme is funded by the Australian Department for Foreign Affairs and Trade (DFAT) through the BecA-CSIRO partnership; the Syngenta Foundation for Sustainable Agriculture (SFSA); the Bill & Melinda Gates Foundation (BMGF); the UK Department for International Development (DFID); and the Swedish International Development Cooperation Agency (Sida). The ABCF Fellowship awarded to GAS was funded by BMGF grant (OPP1075938). Sample collection, field equipment and preliminary sample processing were supported through the “Theileria” project co-funded to the UniversitĂ© EvangĂ©lique en Afrique (UEA) by the Agence Universitaire de la Francophonie (AUF) and the CommunautĂ© Economique des Pays des Grands Lacs (CEPGL). The International Foundation for Science (IFS, Stockholm, Sweden) supported the individual scholarship awarded to GSA (grant no. IFS-92890CA3) for field work and part of field equipment to the “Theileria” project.http://www.parasitesandvectors.comam2020Veterinary Tropical Disease

    Genetic Diversity and Population Structure of <i>Theileria annulata</i> in Oman

    Get PDF
    Background: Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results: We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST’ = 0.075, ξ = 0.07) were detected when the data for T. annulata parasites in Oman was compared with that previously generated for Turkey and Tunisia. Conclusion: Genetic analyses of T. annulata samples representing four geographical regions in Oman revealed a high level of genetic diversity in the parasite population. There was little evidence of genetic differentiation between parasites from different regions, and a high level of genetic diversity was maintained within each sub-population. These findings are consistent with a high parasite transmission rate and frequent movement of animals between different regions in Oman

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Evaluation of anti-microbial, anti-inflammatory and anti-oxidative properties artemisia afra, gunnera perpensa and eucomis autumnalis

    No full text
    Infectious disease is an illness resulting from the invasion of the host species by a pathogenic microbial agent, and outcome of the disease depends on the degree of success of the invading pathogen and immune system of the host [1]. They are considered a major threat to human health, because of the unavailability of vaccines or limited chemotherapy even in the developed parts of the world, although developing countries are carrying the major part of the burden Sub Saharan African countries, including South Africa are mostly affected by respiratory infections, diarrhea, HIV/AIDS, tuberculosis and malaria [2,3] The continued resurfacing of antibiotic- resistant infections drives research to produce better drugs to combat the more resistant pathogens [4]. Auto immune diseases such as lupus are becoming a major concern in both the developed and third world countries [5]. Investigating plants that could be included in affected people’s diet would assist in managing such diseases

    Pharmacological properties of Pomaria sandersonii, Pentanisia prunelloides and Alepidea amatymbica extracts using in vitro assays

    No full text
    The antimicrobial, anti-inflammatory and free radical scavenging activities of root crude acetone extracts and fractions of different polarities from Pomaria sandersonii (Fabaceae), Pentanisia prunelloides (Rubiaceae) and Alepidea amatymbica (Apiaceae) were determined using in vitro assays. The antioxidant properties of extracts and fractions were assessed by reduction of 2, 2Ž-azinobis (3-ethylbenzothiazoline)-6-sulfonic acid and 2, 2-di (4-tert-octylphenyl)-1-picrylhydrazyl radicals which was measured by changes in absorbance using an ultraviolet-visible spectrophotometer. Anti-inflammatory activity of the plant extracts against 15 soybean lipoxygenase enzyme was measured by monitoring the change in absorbance at 234 nm after incubation of 15-LOX with linoleic acid (134 ”M) as substrate. The anti-microbial activities were determined by measuring the minimum inhibitory concentrations using a serial dilution microplate method with terazolium violet as a growth indicator. The minimal inhibitory concentration (MIC) value of the dichloromethane (DCM) and ethyl acetate fractions (1 mg/ml) of P. sandersonii was 80 ”g/ml in each case against Staphylococcus aureus and Escherichia coli. The inhibition activity of 15 soybean lipoxygenase enzyme by the crude extracts at concentration of 25 Όg/ml was 97% for P. sandersonii, 79% for P. prunelloides and 55% for A. amatymbica. This indicates that extracts for these plants can be used as dietary supplements in the management of inflammation related conditions

    Hepatitis E virus infection in pigs : a first report from Zambia

    No full text
    While evidence suggests presence of HEV infection in humans in Zambia, currently, there is no information on its occurrence in domestic pigs. Here, we investigated the presence of HEV antibodies and genome in domestic pigs in Zambia. Sera (n = 484) from domestic pigs were screened for antibodies against HEV by ELISA while genome detection in fecal (n = 25) and liver (n = 100) samples from slaughter pigs was conducted using nested RT-PCR assay. Overall, seroprevalence was 47.7% (231/484) while zoonotic genotype 3 HEV RNA was detected in 16.0% (20/125) of slaughtered pigs. This is the first report to highlight occurrence of HEV infection in domestic pigs in Zambia. This finding suggests possible contamination of the pork supply chain. Moreover, there is a potential risk of zoonotic transmission of HEV to abattoir workers, pig farmers and handlers

    Expanding diversity of bunyaviruses identified in mosquitoes

    No full text
    Abstract Mosquitoes interact with various organisms in the environment, and female mosquitoes in particular serve as vectors that directly transmit a number of microorganisms to humans and animals by blood-sucking. Comprehensive analysis of mosquito-borne viruses has led to the understanding of the existence of diverse viral species and to the identification of zoonotic arboviruses responsible for significant outbreaks and epidemics. In the present study on mosquito-borne bunyaviruses we employed a broad-spectrum RT-PCR approach and identified eighteen different additional species in the Phenuiviridae family and also a number of related but unclassified bunyaviruses in mosquitoes collected in Zambia. The entire RNA genome segments of the newly identified viruses were further analyzed by RNA sequencing with a ribonuclease R (RNase R) treatment to reduce host-derived RNAs and enrich viral RNAs, taking advantage of the dsRNA panhandle structure of the bunyavirus genome. All three or four genome segments were identified in eight bunyavirus species. Furthermore, L segments of three different novel viruses related to the Leishbunyaviridae were found in mosquitoes together with genes from the suspected host, the Crithidia parasite. In summary, our virus detection approach using a combination of broad-spectrum RT-PCR and RNA sequencing analysis with a simple virus enrichment method allowed the discovery of novel bunyaviruses. The diversity of bunyaviruses is still expanding and studies on this will allow a better understanding of the ecology of hematophagous mosquitoes
    corecore