7,606 research outputs found

    Specific Heat of Disordered 3^{3}He

    Full text link
    Porous aerogel is a source of elastic scattering in superfluid 3He and modifies the properties of the superfluid, suppressing the transition temperature and order parameter. The specific heat jumps for the B-phase of superfluid 3He in aerogel have been measured as a function of pressure and interpreted using the homogeneous and inhomogeneous isotropic scattering models. The specific heat jumps for other p-wave states are estimated for comparison.Comment: Manuscript prepared for LT 2

    Single-spin Azimuthal Asymmetries in the ``Reduced Twist-3 Approximation''

    Get PDF
    We consider the single-spin azimuthal asymmetries recently measured at the HERMES experiment for charged pions produced in semi-inclusive deep inelastic scattering of leptons off longitudinally polarized protons. Guided by the experimental results and assuming a vanishing twist-2 transverse quark spin distribution in the longitudinally polarized nucleon, denoted as ``reduced twist-3 approximation'', a self-consistent description of the observed single-spin asymmetries is obtained. In addition, predictions are given for the z dependence of the single target-spin asymmetry.Comment: 8 pages, 2 figures, typos corrected, very small changes to text, reference adde

    Resolving HD 100546 disc in the mid-infrared: Small inner disc and asymmetry near the gap

    Get PDF
    A region of roughly half of the solar system scale around the star HD 100546 is largely cleared of gas and dust, in contrast to the bright outer disc. However, some material is observed in the immediate vicinity of the star. We investigate how the dust is distributed within and outside the gap, and constrain the disc geometry with mid-infrared interferometric observations using VLTI/MIDI. With baseline lengths of 40m, our long baseline observations are sensitive to the inner few AU from the star, and we combined them with observations at shorter, 15m baselines, to probe emission beyond the gap at up to 20AU from the star. We modelled the mid-infrared emission using radial temperature profiles. Our model is composed of infinitesimal concentric annuli emitting as black bodies, and it has distinct inner and outer disc components. We derived an upper limit of 0.7AU for the radial size of the inner disc, from our longest baseline data. This small dusty disc is separated from the edge of the outer disc by a large, roughly 10AU wide gap. Our short baseline data place a bright ring of emission at 11+-1AU, consistent with prior observations of the transition region between the gap and the outer disc, known as the disc wall. The inclination and position angle are constrained by our data to i=53+-8deg and PA=145+-5deg. Compared to the rim and outer disc geometry this suggests co-planarity. Brightness asymmetry is evident in both short and long baseline data, and it is unequivocally discernible from any atmospheric or instrumental effects. The origin of the asymmetry is consistent with the bright disc wall, which we find to be 1-2AU wide. The gap is cleared of micron-sized dust, but we cannot rule out the presence of larger particles and/or perturbing bodies.Comment: 12 pages, 9 figures, accepted for publication in A&

    Hadron mass corrections in semi-inclusive deep inelastic scattering

    Full text link
    We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron. The formalism is constructed specifically to ensure that physical kinematic thresholds for the semi-inclusive process are explicitly respected. A systematic study of the kinematic dependencies of the mass corrections to semi-inclusive cross sections reveals that these are even larger than for inclusive structure functions, especially at very small and very large hadron momentum fractions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, and will be important to efforts at extracting parton distributions or fragmentation functions from semi-inclusive processes at intermediate energies.Comment: 22 pages, 6 figures; expanded discussion of kinematics and new scaling variable; appendix comparing collinear frames included; version to appear in JHE

    Ultrasound attenuation and a P-B-T phase diagram of superfluid 3He in 98% aerogel

    Full text link
    Longitudinal sound attenuation measurements in superfluid 3He in 98% aerogel were conducted at pressures between 14 and 33 bar and in magnetic fields up to 4.44 kG. The temperature dependence of the ultrasound attenuation in the A-like phase was determined for the entire superfluid region exploiting the field induced meta-stable A-like phase at the highest field. In the lower field, the A-B transition in aerogel was identified by a smooth jump in attenuation on both cooling and warming. Based on the transitions observed on warming, a phase diagram as a function of pressure (P), temperature (T) and magnetic field (B) is constructed. We find that the A-B phase boundary in aerogel recedes in a drastically different manner than in bulk in response to an increasing magnetic field. The implications of the observed phase diagram are discussed.Comment: 9 pages, 13 figures, accepted to PR

    Low velocity quantum reflection of Bose-Einstein condensates

    Full text link
    We studied quantum reflection of Bose-Einstein condensates at normal incidence on a square array of silicon pillars. For incident velocities of 2.5-26 mm/s observations agreed with theoretical predictions that the Casimir-Polder potential of a reduced density surface would reflect slow atoms with much higher probability. At low velocities (0.5-2.5 mm/s), we observed that the reflection probability saturated around 60% rather than increasing towards unity. We present a simple model which explains this reduced reflectivity as resulting from the combined effects of the Casimir-Polder plus mean field potential and predicts the observed saturation. Furthermore, at low incident velocities, the reflected condensates show collective excitations.Comment: 4 figure

    Single-Transverse Spin Asymmetry in Dijet Correlations at Hadron Colliders

    Get PDF
    We present a phenomenological study of the single-transverse spin asymmetry in azimuthal correlations of two jets produced nearly "back-to-back" in pp collisions at RHIC. We properly take into account the initial- and final-state interactions of partons that can generate this asymmetry in QCD hard-scattering. Using distribution functions fitted to the existing single-spin data, we make predictions for various weighted single-spin asymmetries in dijet correlations that are now readily testable at RHIC.Comment: 14 pages, 2 figure

    High-order Dy multipole motifs observed in DyB2C2 with resonant soft x-ray Bragg diffraction

    Full text link
    Resonant soft x-ray Bragg diffraction at the Dy M4,5 edges has been exploited to study Dy multipole motifs in DyB2C2. Our results are explained introducing the intra-atomic quadrupolar interaction between the core 3d and valence 4f shell. This allows us to determine for the first time higher order multipole moments of dysprosium 4f4f electrons and to draw their precise charge density. The Dy hexadecapole and hexacontatetrapole moment have been estimated at -20% and +30% of the quadrupolar moment, respectively. No evidence for the lock-in of the orbitals at T_N has been observed, in contrast to earlier suggestions. The multipolar interaction and the structural transition cooperate along c but they compete in the basal plane explaining the canted structure along [110].Comment: 4 pages, 3 figure

    Perturbative contribution to the sin(phi) asymmetry in inclusive pi^{+} electroproduction

    Full text link
    We consider the sin(phi) single target-spin asymmetry in deep-inelastic pi^{+} inclusive electroproduction off a longitudinally polarized target. We show that at larger transverse momentum of the outgoing hadron the evaluated asymmetry decreases if one takes into account the first order alpha_S perturbative contribution to the cross section, integrated over the azimuthal angle. This leads to good agreement with recent HERMES data.Comment: 4 pages with one figure, LaTeX, typos corrected. Contribution to the Proceedings of the QCD'00 Euroconference, Montpellier, 6-13th July 2000, to appear in the Nucl. Phys. B (Proc. Suppl.
    • …
    corecore