57 research outputs found
An XMM and Chandra view of massive clusters of galaxies to z=1
The X-ray properties of a sample of high redshift (z>0.6), massive clusters
observed with XMM-Newton and Chandra are described, including two exceptional
systems. One, at z=0.89, has an X-ray temperature of T=11.5 (+1.1, -0.9) keV
(the highest temperature of any cluster known at z>0.6), an estimated mass of
(1.4+/-0.2)x10^15 solar masses and appears relaxed. The other, at z=0.83, has
at least three sub-clumps, probably in the process of merging, and may also
show signs of faint filamentary structure at large radii,observed in X-rays. In
general there is a mix of X-ray morphologies, from those clusters which appear
relaxed and containing little substructure to some highly non-virialized and
probably merging systems. The X-ray gas metallicities and gas mass fractions of
the relaxed systems are similar to those of low redshift clusters of the same
temperature, suggesting that the gas was in place, and containing its metals,
by z=0.8. The evolution of the mass-temperature relation may be consistent with
no evolution or with the ``late formation'' assumption. The effect of point
source contamination in the ROSAT survey from which these clusters were
selected is estimated, and the implications for the ROSAT X-ray luminosity
function discussed.Comment: 9 pages, in Carnegie Observatories Astrophysics Series, Vol. 3:
Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution,
ed. J. S. Mulchaey, A. Dressler, and A. Oemler. See
http://www.ociw.edu/ociw/symposia/series/symposium3/proceedings.html for a
full-resolution versio
A direct image of the obscuring disk surrounding an active galactic nucleus
Active galactic nuclei (AGN) are generally accepted to be powered by the
release of gravitational energy in a compact accretion disk surrounding a
massive black hole. Such disks are also necessary to collimate powerful radio
jets seen in some AGN. The unifying classification schemes for AGN further
propose that differences in their appearance can be attributed to the opacity
of the accreting material, which may obstruct our view of the central region of
some systems. The popular model for the obscuring medium is a parsec-scale disk
of dense molecular gas, although evidence for such disks has been mostly
indirect, as their angular size is much smaller than the resolution of
conventional telescopes. Here we report the first direct images of a pc-scale
disk of ionised gas within the nucleus of NGC 1068, the archetype of obscured
AGN. The disk is viewed nearly edge-on, and individual clouds within the
ionised disk are opaque to high-energy radiation, consistent with the unifying
classification scheme. In projection, the disk and AGN axes align, from which
we infer that the ionised gas disk traces the outer regions of the long-sought
inner accretion disk.Comment: 14 pages, LaTeX, PSfig, to appear in Nature. also available at
http://hethp.mpe-garching.mpg.de/Preprint
The Imprint of Galaxy Formation on X-ray Clusters
It is widely believed that structure in the Universe evolves hierarchically,
as primordial density fluctuations, amplified by gravity, collapse and merge to
form progressively larger systems. The structure and evolution of X-ray
clusters, however, seems at odds with this hierarchical scenario for structure
formation. Poor clusters and groups, as well as most distant clusters detected
to date, are substantially fainter than expected from the tight relations
between luminosity, temperature and redshift predicted by these models. Here we
show that these discrepancies arise because, near the centre, the entropy of
the hot, diffuse intracluster medium (ICM) is higher tha possible if the ICM
is heated at modest redshift (z \ltsim 2) but prior to cluster collapse,
indicating that the formation of galaxies precedes that of clusters and that
most clusters have been assembled very recently.Comment: 5 pages, plus 2 postscript figures (one in colour), accepted for
publication in Natur
A Chandra and XMM View of the Mass & Metals in Galaxy Groups and Clusters
X-ray observations with Chandra and XMM are providing valuable new measurements of the baryonic and dark matter content of groups and clusters. Masses of cD clusters obtained from X-ray and gravitational lensing studies generally show good agreement, therefore providing important validation of both methods. Gas fractions have been obtained for several clusters that verify previous results for a low matter density (Omega_m ~0.3). Chandra has also provided measurements of the mass profiles deep down into several cluster cores and has generally found no significant deviations from CDM predictions in contrast to the flat core density profiles inferred from the rotation curves of low-surface brightness galaxies and dwarf galaxies; i.e., there is no evidence for self-interacting dark matter in cluster cores. Finally, initial studies of the iron and silicon abundances in centrally E-dominated groups show that they have pronounced gradients from 1-2 solar values within the central 30-50 kpc that fall to values of 0.3-0.5 solar at larger radii. The Si/Fe ratios are consistent with approximately 80% of the metals originating from Type Ia supernovae. Several cD clusters also display central Fe enhancements suggestive of Type Ia supernova enrichment, though some have central dips that may provide a vital clue for solving the cooling flow mystery
Secular Evolution and the Growth of Pseudobulges in Disk Galaxies
Galaxy evolution is in transition from an early universe dominated by
hierarchical clustering to a future dominated by secular processes. These
result from interactions involving collective phenomena such as bars, oval
disks, spiral structure, and triaxial dark halos. This paper summarizes a
review by Kormendy & Kennicutt (2004) using, in part, illustrations of
different galaxies. In simulations, bars rearrange disk gas into outer rings,
inner rings, and galactic centers, where high gas densities feed starbursts.
Consistent with this picture, many barred and oval galaxies have dense central
concentrations of gas and star formation rates that can build bulge-like
stellar densities on timescales of a few billion years. We conclude that
secular evolution builds dense central components in disk galaxies that look
like classical, merger-built bulges but that were made slowly out of disk gas.
We call these pseudobulges. Many pseudobulges can be recognized because they
have characteristics of disks: (1) flatter shapes than those of classical
bulges, (2) correspondingly large ratios of ordered to random velocities, (3)
small velocity dispersions, (4) spiral structure or nuclear bars, (5) nearly
exponential brightness profiles, and (6) starbursts. These structures occur
preferentially in barred and oval galaxies in which secular evolution should be
most rapid. Thus a variety of observational and theoretical results contribute
to a new paradigm of secular evolution that complements hierarchical
clustering.Comment: 19 pages, 9 Postscript figures; requires kapproc.cls and procps.sty;
to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble
Tuning Fork Strikes a New Note", ed. Block, Freeman, Puerari, Groess, and
Block, Dordrecht: Kluwer, in press; for a version with full resolution
figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm
Discovery and redshift of an optical afterglow in 71 deg2: IPTF13bxl and GRB 130702A
We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg2 surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era. © 2013. The American Astronomical Society. All rights reserved
A real-time fast radio burst: Polarization detection and multiwavelength follow-up
Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for the first time. We have discovered an FRB (FRB 140514) in real-time on 2014 May 14 at 17:14:11.06 UTC at the Parkes radio telescope and triggered follow-up at other wavelengths within hours of the event. FRB 140514 was found with a dispersion measure (DM) of 562.7(6) cm-3 pc, giving an upper limit on source redshift of z ≲ 0.5. FRB 140514 was found to be 21 ± 7 per cent (3σ) circularly polarized on the leading edge with a 1σ upper limit on linear polarization <10 per cent. We conclude that this polarization is intrinsic to the FRB. If there was any intrinsic linear polarization, as might be expected from coherent emission, then it may have been depolarized by Faraday rotation caused by passing through strong magnetic fields and/or high-density environments. FRB 140514 was discovered during a campaign to re-observe known FRB fields, and lies close to a previous discovery, FRB 110220; based on the difference in DMs of these bursts and time-on-sky arguments, we attribute the proximity to sampling bias and conclude that they are distinct objects. Follow-up conducted by 12 telescopes observing from X-ray to radio wavelengths was unable to identify a variable multiwavelength counterpart, allowing us to rule out models in which FRBs originate from nearby (z < 0.3) supernovae and long duration gamma-ray bursts. © 2014 The Authors
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- …