CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
A real-time fast radio burst: Polarization detection and multiwavelength follow-up
Authors
M Bailes
ED Barr
+33 more
BR Barsdell
NDR Bhat
F Bian
S Burke-Spolaor
M Caleb
D Champion
P Chandra
G Da Costa
C Delvaux
C Flynn
N Gehrels
J Greiner
A Jameson
S Johnston
MM Kasliwal
EF Keane
S Keller
J Kocz
M Kramer
G Leloudas
D Malesani
JS Mulchaey
C Ng
EO Ofek
DA Perley
E Petroff
A Possenti
BP Schmidt
Y Shen
B Stappers
P Tisserand
W van Straten
C Wolf
Publication date
Publisher
'Oxford University Press (OUP)'
Doi
Abstract
Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for the first time. We have discovered an FRB (FRB 140514) in real-time on 2014 May 14 at 17:14:11.06 UTC at the Parkes radio telescope and triggered follow-up at other wavelengths within hours of the event. FRB 140514 was found with a dispersion measure (DM) of 562.7(6) cm-3 pc, giving an upper limit on source redshift of z ≲ 0.5. FRB 140514 was found to be 21 ± 7 per cent (3σ) circularly polarized on the leading edge with a 1σ upper limit on linear polarization <10 per cent. We conclude that this polarization is intrinsic to the FRB. If there was any intrinsic linear polarization, as might be expected from coherent emission, then it may have been depolarized by Faraday rotation caused by passing through strong magnetic fields and/or high-density environments. FRB 140514 was discovered during a campaign to re-observe known FRB fields, and lies close to a previous discovery, FRB 110220; based on the difference in DMs of these bursts and time-on-sky arguments, we attribute the proximity to sampling bias and conclude that they are distinct objects. Follow-up conducted by 12 telescopes observing from X-ray to radio wavelengths was unable to identify a variable multiwavelength counterpart, allowing us to rule out models in which FRBs originate from nearby (z < 0.3) supernovae and long duration gamma-ray bursts. © 2014 The Authors
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
LJMU Research Online (Liverpool John Moores University)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:researchonline.ljmu.ac.uk:...
Last time updated on 25/02/2017