68 research outputs found
Haulout site usage by southern elephant seals, Mirounga leonina, at Marion Island
Data obtained from annual tagging and regular tag resighting of southern elephant seals at Marion Island has allowed the investigation of the patterns of terrestrial haulout site usage by this species. Southern elephant seals were found to prefer some sites while discriminating against other sites for the various haulout events, with different age and sex classes using different sites. The degree of preference showed signs of having intensified during the stage of population stabilisation, highlighting the influence of population density on site selection. Certain age classes seemed not to tolerate each other at the beaches, especially the adults and juveniles during their breeding and moulting haulouts respectively when an overlap in these events occur. Elephant seals prefer open beaches with smooth surfaces during the breeding season. Sites with access to moult wallows were preferred during the moulting season by adult seals. There is some indication that juvenile seals also preferred such sites during the moult haulout although this was not supported statistically. Wintering young animals did not show strong site selection. Overall, sites with low anthropogenic influence were preferred, especially during the breeding season. Some popular sites were simply used for all haulouts and by all age and sex groups, and apparently have all the requirements of a good site for terrestrial haulout by southern elephant seals.Dissertation (MSc (Zoology))--University of Pretoria, 2005.Zoology and EntomologyMSc (Zoology)Unrestricte
Polarimetric geometric modeling for mm-VLBI observations of black holes
The Event Horizon Telescope (EHT) is a millimeter very long baseline interferometry (VLBI) array that has imaged the apparent shadows of the supermassive black holes M87* and Sagittarius A*. Polarimetric data from these observations contain a wealth of information on the black hole and accretion flow properties. In this work, we develop polarimetric geometric modeling methods for mm-VLBI data, focusing on approaches that fit data products with differing degrees of invariance to broad classes of calibration errors. We establish a fitting procedure using a polarimetric "m-ring" model to approximate the image structure near a black hole. By fitting this model to synthetic EHT data from general relativistic magnetohydrodynamic models, we show that the linear and circular polarization structure can be successfully approximated with relatively few model parameters. We then fit this model to EHT observations of M87* taken in 2017. In total intensity and linear polarization, the m-ring fits are consistent with previous results from imaging methods. In circular polarization, the m-ring fits indicate the presence of event-horizon-scale circular polarization structure, with a persistent dipolar asymmetry and orientation across several days. The same structure was recovered independently of observing band, used data products, and model assumptions. Despite this broad agreement, imaging methods do not produce similarly consistent results. Our circular polarization results, which imposed additional assumptions on the source structure, should thus be interpreted with some caution. Polarimetric geometric modeling provides a useful and powerful method to constrain the properties of horizon-scale polarized emission, particularly for sparse arrays like the EHT
HIV-1 subtype C Nef-mediated SERINC5 down-regulation significantly contributes to overall Nef activity
BACKGROUND: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed. RESULTS: No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant. CONCLUSIONS: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics
Haulout site selection by southern elephant seals at Marion Island
Using data from an ongoing mark-resight programme at Marion Island, we tested empirically whether southern elephant seals prefer certain terrestrial sites to others during the breeding, moulting and winter haulouts, and whether the pattern of site use is the same for different age and sex groups. Southern elephant seals preferred some sites, while discriminating against other sites, with different age and sex classes using different sites for certain haulout events. Wintering young animals did not show strong site selection. Some popular sites were used for all haulouts by all age and sex groups, and apparently have all the requirements of a good site for terrestrial haulout by southern elephant seals. Site selection becomes more apparent with age, suggesting the role of haulout experience in site selection
Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXI J1535-571
We present results from six epochs of quasi-simultaneous radio, (sub-)millimetre, infrared, optical, and X-ray observations of the black hole X-ray binary MAXI J1535-571. These observations show that as the source transitioned through the hard-intermediate X-ray state towards the soft-intermediate X-ray state, the jet underwent dramatic and rapid changes. We observed the frequency of the jet spectral break, which corresponds to the most compact region in the jet where particle acceleration begins (higher frequencies indicate closer to the black hole), evolves from the infrared band into the radio band (decreasing by approximate to 3 orders of magnitude) in less than a day. During one observational epoch, we found evidence of the jet spectral break evolving in frequency through the radio band. Estimating the magnetic field and size of the particle acceleration region shows that the rapid fading of the high-energy jet emission was not consistent with radiative cooling; instead, the particle acceleration region seems to be moving away from the black hole on approximately dynamical time-scales. This result suggests that the compact jet quenching is not caused by local changes to the particle acceleration, rather we are observing the acceleration region of the jet travelling away from the black hole with the jet flow. Spectral analysis of the X-ray emission shows a gradual softening in the few days before the dramatic jet changes, followed by a more rapid softening similar to 1-2 d after the onset of the jet quenching
Ordered magnetic fields around the 3C 84 central black hole
Context. 3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz.Aims. Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84.Methods. We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u; v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure.Results. We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency of gamma(m) = (113 +/- 4) GHz, a corresponding synchrotron self-absorbed magnetic field of B-SSA = (2.9 +/- 1.6) G, and an equipartition magnetic field of B-eq = (5.2 +/- 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (m(net) = (17.0 +/- 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017-2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84.Conclusions. The findings of our investigation into di fferent flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84
First M87 Event Horizon Telescope results. IX.: detection of near-horizon circular polarization
Galaxie
Ordered magnetic fields around the 3C 84 central black hole
Please read abstract in article.http://www.hanspub.org/Journal/AAS.htmlPhysicsNon
First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization
Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈∣v∣〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (∣v int∣ < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*
- …