76 research outputs found

    Determinants of the population growth of the West Nile virus mosquito vector Culex pipiens in a repeatedly affected area in Italy

    Get PDF
    Background The recent spread of West Nile Virus in temperate countries has raised concern. Predicting the likelihood of transmission is crucial to ascertain the threat to Public and Veterinary Health. However, accurate models of West Nile Virus (WNV) expansion in Europe may be hampered by limited understanding of the population dynamics of their primary mosquito vectors and their response to environmental changes.<p></p> Methods We used data collected in north-eastern Italy (2009–2011) to analyze the determinants of the population growth rate of the primary WNV vector Culex pipiens. A series of alternative growth models were fitted to longitudinal data on mosquito abundance to evaluate the strength of evidence for regulation by intrinsic density-dependent and/or extrinsic environmental factors. Model-averaging algorithms were then used to estimate the relative importance of intrinsic and extrinsic variables in describing the variations of per-capita growth rates.<p></p> Results Results indicate a much greater contribution of density-dependence in regulating vector population growth rates than of any environmental factor on its own. Analysis of an average model of Cx. pipiens growth revealed that the most significant predictors of their population dynamics was the length of daylight, estimated population size and temperature conditions in the 15 day period prior to sampling. Other extrinsic variables (including measures of precipitation, number of rainy days, and humidity) had only a minor influence on Cx. pipiens growth rates.<p></p> Conclusions These results indicate the need to incorporate density dependence in combination with key environmental factors for robust prediction of Cx. pipiens population expansion and WNV transmission risk. We hypothesize that detailed analysis of the determinants of mosquito vector growth rate as conducted here can help identify when and where an increase in vector population size and associated WNV transmission risk should be expected.<p></p&gt

    Impact of emergency oral rabies vaccination of foxes in northeastern Italy, 28 December 2009-20 January 2010: preliminary evaluation.

    Get PDF
    Fox rabies re-emerged in northeastern Italy in 2008, in an area bordering Slovenia. In 2009, the infection spread westward to Veneto region and in 2010 to the provinces of Trento and Bolzano. Aerial emergency oral fox vaccination was implemented in the winter 2009-10. Since this vaccination was performed at altitudes below the freezing level, a statistical analysis was conducted to evaluate its impact. Of the foxes sampled following the vaccination campaign, 77% showed a rabies antibody titre of ≥0.5 IU/ml

    Epidemiology-driven approaches to surveillance in HPAI-vaccinated poultry flocks aiming to demonstrate freedom from circulating HPAIV

    Get PDF
    Incursion pressure of high pathogenicity avian influenza viruses (HPAIV) by secondary spread among poultry holdings and/or from infected migratory wild bird populations increases worldwide. Vaccination as an additional layer of protection of poultry holdings using appropriately matched vaccines aims at reducing clinical sequelae of HPAIV infection, disrupting HPAIV transmission, curtailing economic losses and animal welfare problems and cutting exposure risks of zoonotic HPAIV at the avian-human interface. Products derived from HPAIV-vaccinated poultry should not impose any risk of virus spread or exposure. Vaccination can be carried out with zero-tolerance for infection in vaccinated herds and must then be flanked by appropriate surveillance which requires tailoring at several levels: (i) Controlling appropriate vaccination coverage and adequate population immunity in individual flocks and across vaccinated populations; (ii) assessing HPAI-infection trends in unvaccinated and vaccinated parts of the poultry population to provide early detection of new/re-emerged HPAIV outbreaks; and (iii) proving absence of HPAIV circulation in vaccinated flocks ideally by real time-monitoring. Surveillance strategies, i.e. selecting targets, tools and random sample sizes, must be accommodated to the specific epidemiologic and socio-economic background. Methodological approaches and practical examples from three countries or territories applying AI vaccination under different circumstances are reviewed here

    Rabies and canine distemper virus epidemics in the red fox population of Northern Italy (2006–2010)

    Get PDF
    Since 2006 the red fox (Vulpes vulpes) population in north-eastern Italy has experienced an epidemic of canine distemper virus (CDV). Additionally, in 2008, after a thirteen-year absence from Italy, fox rabies was re-introduced in the Udine province at the national border with Slovenia. Disease intervention strategies are being developed and implemented to control rabies in this area and minimise risk to human health. Here we present empirical data and the epidemiological picture relating to these epidemics in the period 2006-2010. Of important significance for epidemiological studies of wild animals, basic mathematical models are developed to exploit information collected from the surveillance program on dead and/or living animals in order to assess the incidence of infection. These models are also used to estimate the rate of transmission of both diseases and the rate of vaccination, while correcting for a bias in early collection of CDV samples. We found that the rate of rabies transmission was roughly twice that of CDV, with an estimated effective contact between infected and susceptible fox leading to a new infection occurring once every 3 days for rabies, and once a week for CDV. We also inferred that during the early stage of the CDV epidemic, a bias in the monitoring protocol resulted in a positive sample being almost 10 times more likely to be collected than a negative sample. We estimated the rate of intake of oral vaccine at 0.006 per day, allowing us to estimate that roughly 68% of the foxes would be immunised. This was confirmed by field observations. Finally we discuss the implications for the eco-epidemiological dynamics of both epidemics in relation to control measures

    Evaluating Surveillance Strategies for the Early Detection of Low Pathogenicity Avian Influenza Infections

    Get PDF
    In recent years, the early detection of low pathogenicity avian influenza (LPAI) viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms) was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (Rh). The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas Rh reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control). Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier), whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus introduction, a less frequent sampling approach might be admitted, provided that the surveillance is intensified as soon as the first outbreak is detected

    Registered replication report on Fischer, Castel, Dodd, and Pratt (2003)

    Get PDF
    The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space
    • …
    corecore