9 research outputs found

    The clinical features of pulmonary artery involvement in Takayasu arteritis and its relationship with ischemic heart diseases and infection

    Get PDF
    BACKGROUND: Pulmonary artery involvement (PAI) in Takayasu arteritis (TAK) can lead to severe complications, but the relationship between the two has not been fully clarified. METHODS: We retrospectively investigated 166 consecutive patients with TAK who attended Kyoto University Hospital from 1997 to 2018. The demographic data, clinical symptoms and signs, comorbidities, treatments, and imaging findings were compared between patients with and without PAI. TAK was diagnosed based on the American College of Rheumatology Classification Criteria (1990) or the Japanese Clinical Diagnostic Criteria (2008). PAI was identified using enhanced computed tomography, magnetic resonance imaging, or lung scintigraphy. RESULTS: PAI was detected in 14.6% (n = 24) of total TAK patients. Dyspnea (25.0% vs. 8.6%; p = 0.043), pulmonary arterial hypertension (PAH) (16.7% vs. 0.0%; p < 0.001), ischemic heart disease (IHD) (29% vs. 9.3%; p = 0.018), respiratory infection (25.0% vs. 6.0%; p = 0.009), and nontuberculous mycobacteria (NTM) infection (20.8% vs. 0.8%; p < 0.001) were significantly more frequent, and renal artery stenosis (0% vs. 17%; p = 0.007) was significantly less frequent in TAK patients with PAI than in those without PAI. PAI and biologics were risk factors for NTM. CONCLUSIONS: TAK patients with PAI more frequently have dyspnea, PAH, IHD, and respiratory infection, including NTM, than TAK patients without PAI

    Electrochemical impedance spectroscopy analysis with a symmetric cell for LiCoO<sub>2</sub> cathode degradation correlated with Co dissolution

    No full text
    Static degradation of LiCoO2 cathodes is a problem that hinders accurate analysis using our developed separable symmetric cell. Therefore, in this study we investigate the static degradation of LiCoO2 cathodes in separable symmetric cells by electrochemical impedance spectroscopy (EIS) and inductively coupled plasma analyses. EIS measurements of LiCoO2 cathodes are conducted in various electrolytes, with different anions and with or without HF and/or H2O. This allows us to determine the static degradation of LiCoO2 cathodes relative to their increase of charge transfer resistance. The increase of the charge transfer resistance of the LiCoO2 cathodes is attributed to cobalt dissolution from the active material of LiCoO2. Cobalt dissolution from LiCoO2 is revealed to occur even at low potential in the presence of HF, which is generated from LiPF6 and H2O. The results indicate that avoidance of HF generation is important for the analysis of lithium-ion battery electrodes by using the separable cell. These findings reveal the condition to achieve accurate analysis by EIS using the separable cell

    Efficacy and safety in mice of repeated, lifelong administration of an ANGPTL3 vaccine

    No full text
    Abstract Previously, we reported that an ANGPTL3 vaccine is a hopeful therapeutic option against dyslipidemia. In our current study, we assess durability and booster effects of that vaccine over a period representing a mouse’s lifespan. The vaccine remained effective for over one year, and booster vaccination maintained suppression of circulating triglyceride levels thereafter without major adverse effects on lungs, kidneys, or liver, suggesting vaccine efficacy and safety
    corecore