308 research outputs found

    Signals of supersymmetry with inaccessible first two families at the Large Hadron Collider

    Full text link
    We investigate the signals of supersymmetry (SUSY) in a scenario where only the third family squarks and sleptons can be produced at the Large Hadron Collider (LHC), in addition to the gluino, charginos and neutralinos. The final states in such cases are marked by a multiplicity of top and/or bottom quarks. We study in particular, the case when the stop, sbottom and gluino masses are near the TeV scale due to which, the final state t's and b's are very energetic. We point out the difficulty in b-tagging and identifying energetic tops and suggest several event selection criteria which allow the signals to remain significantly above the standard model background. We show that such scenarios with gluino mass up to 2 TeV can be successfully probed at the LHC. Information on tanβ\tan \beta can also be obtained by looking at associated Higgs production in the cascades of accompanying neutralinos. We also show that a combined analysis of event rates in the different channels and the effective mass distribution allows one to differentiate this scenario from the one where all three sfermion families are accessible.Comment: v3: 17 pages, 8 figures, 7 table

    Invisible charginos and neutralinos from gauge boson fusion: a way to explore anomaly mediation ?

    Get PDF
    We point out that vector boson fusion (VBF) at the Large Hadron Collider (LHC) can lead to useful signals for charginos and neutralinos in supersymmetric scenarios where these particles are almost invisible. The proposed signals are just two forward jets with missing transverse energy. It is shown that in this way one can probe a large region of the parameter space of a theory with anomaly mediated supersymmtery breaking (AMSB) at the LHC. In addition, scenarios where the lightest neutralinos and charginos are Higgsino-like can give copious signals of the above type

    Vacuum insulated panels for sustainable buildings: a review of research and applications

    Get PDF
    New research has identified vacuum insulation panels (VIPs) as highly efficient insulators for use in building construction. They are reported to be several times more effective than conventional materials of a similar thickness in terms of thermal conductivity. Because of their smaller space requirement, VIPs maximize the internal usage area of buildings and so reduce the cost of construction. There are however some obstacles that have hindered the application of VIPs, notably their high cost, susceptibility to perforation and the long-term water and gas effects that worsen their performance. This paper reviews the contemporary research on VIP as a state-of-the-art material for building insulation. The main components and physical principles of VIP performance are discussed. Finally, the review of VIPs available on the market and their performance is provided

    Bilarge neutrino mixing from supersymmetry with high-scale nonrenormalizable interactions

    Get PDF
    We suggest a supersymmetric (SUSY) explanation of neutrino masses and mixing, where nonrenormalizable interactions in the hidden sector generate lepton number violating Majorana mass terms for both right-chiral sneutrinos and neutrinos. It is found necessary to start with a superpotential including an array of gauge singlet chiral superfields. This leads to nondiagonal ΔL=2\Delta L = 2 mass terms and almost diagonal SUSY breaking AA-terms. As a result, the observed pattern of bilarge mixing can be naturally explained by the simultaneous existence of the seesaw mechanism and radiatively induced masses. Allowed ranges of parameters in the gauge singlet sector are delineated, corresponding to each of the cases of normal hierarchy, inverted hierarchy and degenerate neutrinos.Comment: 19 pages, 5 figures. Minor modifications are made in the title and the text, some new references are added. To appear in this form in Physical Review

    Split supersymmetry and the role of a light fermion in a supergravity-based scenario

    Full text link
    We investigate split supersymmetry (SUSY) within a supergravity framework, where local SUSY is broken by the F-term of a hidden sector chiral superfield X. With reasonably general assumptions, we show that the fermionic component of X will always have mass within a Tev. Though its coupling to the observable sector superfields is highly suppressed in Tev scale SUSY, we show that it can be enhanced by many orders in split SUSY, leading to its likely participation in accelerator phenomenology.We conclude with a specific example of such a scenario in a string based supergravity model.Comment: 12 Pages, Latex, Title changed, version thoroughly revise

    Singlet Charge 2/32/3 Quark hiding the Top: Tevatron and LEP Implications

    Full text link
    If cc and tt quarks are strongly mixed with a weak singlet charge 2/32/3 quark, BR(tν+X)BR(t\to \ell\nu + X) could be suppressed via the tcH0t\to cH^0 mode, thereby the top quark could still hide below MWM_W, whereas the heavy quark signal observed at the Tevatron is due to the dominantly singlet quark QQ. This may occur without affecting the small mcm_c value. Demanding mQ175m_Q \simeq 175 GeV and m_t \ltap M_W, we find that BR(tν+X)BR(t\to \ell\nu + X) cannot be too suppressed. The heavy quark QQ decays via W, HW,\ H, and ZZ bosons. The latter can lead to bb-tagged Z+4Z + 4 jet events, while the strong cc--QQ mixing is reflected in sizable QsWQ\to sW fraction. ZtcˉZ\to t\bar c decay occurs at tree level and may be at the 10310^{-3} order, leading to the signature of ZνbcˉZ\to \ell\nu b\bar c, all isolated and with large pTp_T, at 10510^{-5} order.Comment: 10 pages + 3 Figures (not included), ReVTeX, NTUTH-94-1

    Supergravity can reconcile dark matter with lepton number violating neutrino masses

    Full text link
    Supersymmetry offers a cold dark matter candidate, provided that lepton number is {\em not violated by an odd number of units}. On the other hand, lepton number violation by even (two) units gives us an attractive mechanism of neutrino mass generation. Here we offer an explanation of this, in a supergravity framework underlying a supersymmetric scenario, the essential feature being particles carrying lepton numbers, which interact only gravitationally with all other known particles. It is shown that one can have the right amount of ΔL=2\Delta L = 2 effect giving rise to neutrino masses, whereas the lifetime for ΔL=1\Delta L = 1 decays of the lightest supersymmetric particle can be prolonged beyond the present age of the universe.Comment: 8 pages, significant changes in the conceptual ideas and presentation of the paper, minor chages in the title and abstract, added few references. This is to appear in Physical Review

    Hybrid Water Demand Forecasting Model Associating Artificial Neural Network with Fourier Series

    Get PDF
    This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.Brazilian Scientific and Technological Development Council (CNPq)Brazilian Scientific and Technological Development Council (CNPq)Research Support Foundation of Sao Paulo (FAPESP)Research Support Foundation of Sao Paulo (FAPESP

    Maxwell's field coupled nonminimally to quadratic torsion: Induced axion field and birefringence of the vacuum

    Full text link
    We consider a possible (parity conserving) interaction between the electromagnetic field FF and a torsion field TαT^\alpha of spacetime. For generic elementary torsion, gauge invariant coupling terms of lowest order fall into two classes that are both nonminimal and {\it quadratic} in torsion. These two classes are displayed explicitly. The first class of the type FT2\sim F T^2 yields (undesirable) modifications of the Maxwell equations. The second class of the type F2T2\sim F^2 T^2 doesn't touch the Maxwell equations but rather modifies the constitutive tensor of spacetime. Such a modification can be completely described in the framework of metricfree electrodynamics. We recognize three physical effects generated by the torsion: (i) An axion field that induces an {\em optical activity} into spacetime, (ii) a modification of the light cone structure that yields {\em birefringence} of the vacuum, and (iii) a torsion dependence of the {\em velocity of light.} We study these effects in the background of a Friedmann universe with torsion. {\it File tor17.tex, 02 August 2003}Comment: 6 page
    corecore